Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays

I. Elfadel
{"title":"Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays","authors":"I. Elfadel","doi":"10.1109/AICAS57966.2023.10168567","DOIUrl":null,"url":null,"abstract":"In this circuit-theoretic paper, we establish a new result for the global convergence of the waveform relaxation (WR) algorithm in the specific context of analog associative arrays having the Rectified Linear Unit (ReLU) as an activation function. The traditional methods for proving WR convergence on generic analog circuits rely on the use of exponentially weighted norms to control the behavior of the transient waveforms for large simulation intervals. The main contribution of this paper is to show that in the particular case of analog associative ReLU arrays, WR convergence for large simulation intervals does not require exponentially weighted norms and can instead be ascertained using the common norm of uniform convergence. Using the connectivity matrix of the associativity array, a practical criterion for guaranteeing WR convergence is provided.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this circuit-theoretic paper, we establish a new result for the global convergence of the waveform relaxation (WR) algorithm in the specific context of analog associative arrays having the Rectified Linear Unit (ReLU) as an activation function. The traditional methods for proving WR convergence on generic analog circuits rely on the use of exponentially weighted norms to control the behavior of the transient waveforms for large simulation intervals. The main contribution of this paper is to show that in the particular case of analog associative ReLU arrays, WR convergence for large simulation intervals does not require exponentially weighted norms and can instead be ascertained using the common norm of uniform convergence. Using the connectivity matrix of the associativity array, a practical criterion for guaranteeing WR convergence is provided.
关联ReLU阵列暂态分析的收敛波形松弛方案
在电路理论论文中,我们建立了以整流线性单元(ReLU)为激活函数的模拟关联阵列下波形松弛(WR)算法全局收敛的一个新结果。在一般模拟电路上证明WR收敛性的传统方法依赖于使用指数加权规范来控制大模拟区间内瞬态波形的行为。本文的主要贡献是表明,在模拟关联ReLU阵列的特殊情况下,大模拟区间的WR收敛不需要指数加权范数,而是可以使用一致收敛的公共范数来确定。利用结合律阵的连通性矩阵,给出了保证WR收敛的实用准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信