Multi-Modal Multi-Task Deep Learning For Speaker And Emotion Recognition Of TV-Series Data

Sashi Novitasari, Quoc Truong Do, S. Sakti, D. Lestari, Satoshi Nakamura
{"title":"Multi-Modal Multi-Task Deep Learning For Speaker And Emotion Recognition Of TV-Series Data","authors":"Sashi Novitasari, Quoc Truong Do, S. Sakti, D. Lestari, Satoshi Nakamura","doi":"10.1109/ICSDA.2018.8693020","DOIUrl":null,"url":null,"abstract":"Since paralinguistic aspects must be considered to understand speech, we construct a deep learning framework that utilizes multi-modal features to simultaneously recognize both speakers and emotions. There are three kinds of feature modalities: acoustic, lexical, and facial. To fuse the features from multiple modalities, we experimented on three methods: majority voting, concatenation, and hierarchical fusion. The recognition was done from TV-series dataset that simulate actual conversations.","PeriodicalId":303819,"journal":{"name":"2018 Oriental COCOSDA - International Conference on Speech Database and Assessments","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Oriental COCOSDA - International Conference on Speech Database and Assessments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSDA.2018.8693020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Since paralinguistic aspects must be considered to understand speech, we construct a deep learning framework that utilizes multi-modal features to simultaneously recognize both speakers and emotions. There are three kinds of feature modalities: acoustic, lexical, and facial. To fuse the features from multiple modalities, we experimented on three methods: majority voting, concatenation, and hierarchical fusion. The recognition was done from TV-series dataset that simulate actual conversations.
多模态多任务深度学习与电视连续剧数据的情感识别
由于必须考虑副语言方面来理解语音,因此我们构建了一个利用多模态特征同时识别说话者和情绪的深度学习框架。有三种特征形态:声学、词汇和面部。为了融合来自多种模式的特征,我们实验了三种方法:多数投票、串联和分层融合。这种识别是通过模拟真实对话的电视剧数据集完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信