Adaptive local polynomial periodogram for time-varying frequency estimation

V. Katkovnik
{"title":"Adaptive local polynomial periodogram for time-varying frequency estimation","authors":"V. Katkovnik","doi":"10.1109/TFSA.1996.547480","DOIUrl":null,"url":null,"abstract":"The local polynomial periodogram enables one to obtain nonparametric estimates of the instantaneous frequency (IF) and its derivatives. The optimal choice of the window size based on asymptotic formulas for the variance and bias can resolve the bias-variance trade-off usual for nonparametric estimation. However the practical value of such optimal estimator is not large because the optimal window size depends on the unknown smoothness of the IF. The main goal of this paper is to develop an adaptive estimator with a time-varying and data-driven window size which is able to provide a quality close to that which can be achieved if the smoothness of the IF is known in advance. The developed algorithm uses only the formulas for the variance of the estimates. Simulation shows a good tracking ability of the adaptive algorithm.","PeriodicalId":415923,"journal":{"name":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1996.547480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

The local polynomial periodogram enables one to obtain nonparametric estimates of the instantaneous frequency (IF) and its derivatives. The optimal choice of the window size based on asymptotic formulas for the variance and bias can resolve the bias-variance trade-off usual for nonparametric estimation. However the practical value of such optimal estimator is not large because the optimal window size depends on the unknown smoothness of the IF. The main goal of this paper is to develop an adaptive estimator with a time-varying and data-driven window size which is able to provide a quality close to that which can be achieved if the smoothness of the IF is known in advance. The developed algorithm uses only the formulas for the variance of the estimates. Simulation shows a good tracking ability of the adaptive algorithm.
时变频率估计的自适应局部多项式周期图
局部多项式周期图使我们能够得到瞬时频率(IF)及其导数的非参数估计。基于方差和偏差渐近公式的窗口大小的最优选择可以解决非参数估计中常见的偏差-方差权衡问题。然而,这种最优估计器的实用价值不大,因为最优窗口大小取决于中频的未知平滑度。本文的主要目标是开发一种具有时变和数据驱动的窗口大小的自适应估计器,该估计器能够提供接近于如果提前知道if的平滑度可以实现的质量。所开发的算法仅使用估计方差的公式。仿真结果表明,该自适应算法具有良好的跟踪能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信