R. Hensen, M. V. D. van de Molengraft, M. Steinbuch
{"title":"High performance regulator control for mechanical systems subjected to friction","authors":"R. Hensen, M. V. D. van de Molengraft, M. Steinbuch","doi":"10.1109/CCA.2001.973864","DOIUrl":null,"url":null,"abstract":"Several control strategies are compared with respect to their performance for regulator tasks on mechanical systems that exhibit friction. For this purpose a classic PID-controller combined with mass and frictional feedforward is compared to (i) a PID-controller combined with a model-based friction compensation using the dynamic LuGre friction model and (ii) a gain-scheduled optimal PD-controller based on a polytopic linear model (PLM). The latter consists of a feedforward part and an optimal nonlinear feedback part. The controllers are compared to the classic PID-controller by means of experiments on a rotating arm subjected to friction. The performance for three third order point to point setpoints shows that the gain-scheduled optimal PD-controller outperforms the other controllers with respect to settling time and maximal error after setpoint. The tracking performance is comparable for the LuGre-based controller and the classic PID-controller where the tracking performance of the gain-scheduled PD-controller is limited.","PeriodicalId":365390,"journal":{"name":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2001.973864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Several control strategies are compared with respect to their performance for regulator tasks on mechanical systems that exhibit friction. For this purpose a classic PID-controller combined with mass and frictional feedforward is compared to (i) a PID-controller combined with a model-based friction compensation using the dynamic LuGre friction model and (ii) a gain-scheduled optimal PD-controller based on a polytopic linear model (PLM). The latter consists of a feedforward part and an optimal nonlinear feedback part. The controllers are compared to the classic PID-controller by means of experiments on a rotating arm subjected to friction. The performance for three third order point to point setpoints shows that the gain-scheduled optimal PD-controller outperforms the other controllers with respect to settling time and maximal error after setpoint. The tracking performance is comparable for the LuGre-based controller and the classic PID-controller where the tracking performance of the gain-scheduled PD-controller is limited.