{"title":"ON SCALING AND REGULAR VARIATION","authors":"N. Bingham","doi":"10.2298/PIM140202002B","DOIUrl":null,"url":null,"abstract":"We survey scaling arguments, both asymptotic (involving regular variation) and exact (involving self-similarity), in various areas of mathemat- ical analysis and mathematical physics. 1. Scaling and Fechner's law There is a sizeable body of theory to the effect that, where two related physically meaningful functions f and g have no natural scale in which to measure their units, and are reasonably smooth, then their relationship is given by a power law: (F)","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM140202002B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We survey scaling arguments, both asymptotic (involving regular variation) and exact (involving self-similarity), in various areas of mathemat- ical analysis and mathematical physics. 1. Scaling and Fechner's law There is a sizeable body of theory to the effect that, where two related physically meaningful functions f and g have no natural scale in which to measure their units, and are reasonably smooth, then their relationship is given by a power law: (F)