Diffractive Optics in Free-Space OptoElectronic Computing Systems

P. Marchand, F. Mccormick, S. Esener
{"title":"Diffractive Optics in Free-Space OptoElectronic Computing Systems","authors":"P. Marchand, F. Mccormick, S. Esener","doi":"10.1364/domo.1996.dmd.1","DOIUrl":null,"url":null,"abstract":"Optical interconnections have been shown to have advantages over electrical interconnections in terms of speed, energy, and density for global links1. In addition, the flexibility of optical interconnections permits efficient electronic layouts that can improve the performance of electrical connections in an opto-electronic computing system. Optical interconnections systems are currently a very active area of research2,3,4,5. These systems typically combine electronic circuits, opto-electronic transmitters and receivers, and optical elements. Electronic circuits are usually designed, optimized, and fabricated using standard VLSI technology. Many technologies are available for opto-electronic transmitters and receivers; in our case, we will use either Si/PLZT6,7 or Si/MQW8 technologies. Similarly, there is a wide choice of technologies available for the optical elements in the system. In this paper we first present some results on diffractive elements for Free-Space Interconnection systems fabricated using e-beam direct write technology. Then we discuss the design and optimization of the diffractive elements used in a particular free-space optical interconnection scheme: the optical transpose interconnection system (OTIS); where we have used CodeV®9 optical system design software package to design and optimize several different systems based on both refractive and diffractive micro-optic technologies. In addition, we have explored the possibility of using a volume holographic element to replace the need for a polarizing beam splitter in the system.","PeriodicalId":301804,"journal":{"name":"Diffractive Optics and Micro-Optics","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffractive Optics and Micro-Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/domo.1996.dmd.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical interconnections have been shown to have advantages over electrical interconnections in terms of speed, energy, and density for global links1. In addition, the flexibility of optical interconnections permits efficient electronic layouts that can improve the performance of electrical connections in an opto-electronic computing system. Optical interconnections systems are currently a very active area of research2,3,4,5. These systems typically combine electronic circuits, opto-electronic transmitters and receivers, and optical elements. Electronic circuits are usually designed, optimized, and fabricated using standard VLSI technology. Many technologies are available for opto-electronic transmitters and receivers; in our case, we will use either Si/PLZT6,7 or Si/MQW8 technologies. Similarly, there is a wide choice of technologies available for the optical elements in the system. In this paper we first present some results on diffractive elements for Free-Space Interconnection systems fabricated using e-beam direct write technology. Then we discuss the design and optimization of the diffractive elements used in a particular free-space optical interconnection scheme: the optical transpose interconnection system (OTIS); where we have used CodeV®9 optical system design software package to design and optimize several different systems based on both refractive and diffractive micro-optic technologies. In addition, we have explored the possibility of using a volume holographic element to replace the need for a polarizing beam splitter in the system.
自由空间光电计算系统中的衍射光学
对于全球链路而言,光互连在速度、能量和密度方面已被证明比电互连有优势。此外,光互连的灵活性允许有效的电子布局,可以提高光电计算系统中电气连接的性能。光互连系统目前是一个非常活跃的研究领域2,3,4,5。这些系统通常结合了电子电路、光电发射器和接收器以及光学元件。电子电路通常采用标准的超大规模集成电路技术进行设计、优化和制造。许多技术可用于光电发射器和接收器;在我们的示例中,我们将使用Si/PLZT6、7或Si/MQW8技术。同样,系统中的光学元件也有广泛的技术选择。本文首先给出了利用电子束直写技术制备自由空间互连系统的衍射元件的一些结果。然后讨论了一种特殊的自由空间光互连方案:光转置互连系统(OTIS)中衍射元件的设计和优化;其中,我们使用CodeV®9光学系统设计软件包来设计和优化基于折射和衍射微光学技术的几种不同系统。此外,我们还探索了使用体全息元件来取代系统中对偏振分束器的需求的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信