Creativity Embedding: A Vector to Characterise and Classify Plausible Triples in Deep Learning NLP Models

Isabeau Oliveri, Luca Ardito, Giuseppe Rizzo, M. Morisio
{"title":"Creativity Embedding: A Vector to Characterise and Classify Plausible Triples in Deep Learning NLP Models","authors":"Isabeau Oliveri, Luca Ardito, Giuseppe Rizzo, M. Morisio","doi":"10.4000/books.aaccademia.8768","DOIUrl":null,"url":null,"abstract":"English. In this paper we define the creativity embedding of a text based on four self-assessment creativity metrics, namely diversity, novelty, serendipity and magnitude, knowledge graphs, and neural networks. We use as basic unit the notion of triple (head, relation, tail). We investigate if additional information about creativity improves natural language processing tasks. In this work, we focus on triple plausibility task, exploiting BERT model and a WordNet11 dataset sample. Contrary to our hypothesis, we do not detect increase in the performance.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.8768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

English. In this paper we define the creativity embedding of a text based on four self-assessment creativity metrics, namely diversity, novelty, serendipity and magnitude, knowledge graphs, and neural networks. We use as basic unit the notion of triple (head, relation, tail). We investigate if additional information about creativity improves natural language processing tasks. In this work, we focus on triple plausibility task, exploiting BERT model and a WordNet11 dataset sample. Contrary to our hypothesis, we do not detect increase in the performance.
创造力嵌入:深度学习NLP模型中表征和分类似然三元组的向量
英语。本文基于多样性、新颖性、偶然性和重要性、知识图谱和神经网络这四个自我评估的创造力指标来定义文本的创造力嵌入。我们使用三元概念(头、关系、尾)作为基本单位。我们调查了关于创造力的额外信息是否能改善自然语言处理任务。在这项工作中,我们专注于三重合理性任务,利用BERT模型和WordNet11数据集样本。与我们的假设相反,我们没有发现性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信