QaQ: Robust 6D Pose Estimation via Quality-Assessed RGB-D Fusion

Théo Petitjean, Zongwei Wu, O. Laligant, C. Demonceaux
{"title":"QaQ: Robust 6D Pose Estimation via Quality-Assessed RGB-D Fusion","authors":"Théo Petitjean, Zongwei Wu, O. Laligant, C. Demonceaux","doi":"10.23919/MVA57639.2023.10216208","DOIUrl":null,"url":null,"abstract":"RGB-D 6D pose estimation has recently drawn great research attention thanks to the complementary depth information. Whereas, the depth and the color image are often noisy in real industrial scenarios. Therefore, it becomes challenging for many existing methods that fuse equally RGB and depth features. In this paper, we present a novel fusion design to adaptively merge RGB-D cues. Specifically, we created a Quality-assessment block that estimates the global quality of the input modalities. This quality represented as an α parameter is then used to reinforce the fusion. We have thus found a simple and effective way to improve the robustness to low-quality inputs in terms of Depth and RGB. Extensive experiments on 6D pose estimation demonstrate the efficiency of our method, especially when noise is present in the input.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10216208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

RGB-D 6D pose estimation has recently drawn great research attention thanks to the complementary depth information. Whereas, the depth and the color image are often noisy in real industrial scenarios. Therefore, it becomes challenging for many existing methods that fuse equally RGB and depth features. In this paper, we present a novel fusion design to adaptively merge RGB-D cues. Specifically, we created a Quality-assessment block that estimates the global quality of the input modalities. This quality represented as an α parameter is then used to reinforce the fusion. We have thus found a simple and effective way to improve the robustness to low-quality inputs in terms of Depth and RGB. Extensive experiments on 6D pose estimation demonstrate the efficiency of our method, especially when noise is present in the input.
QaQ:基于质量评估RGB-D融合的稳健6D姿态估计
rgb - d6d位姿估计由于其深度信息的互补性,近年来引起了广泛的研究关注。然而,在实际工业场景中,深度和彩色图像往往存在噪声。因此,现有的许多融合RGB和深度特征的方法变得具有挑战性。在本文中,我们提出了一种新的自适应融合RGB-D线索的融合设计。具体来说,我们创建了一个质量评估块来估计输入模式的整体质量。这种质量表示为α参数,然后用来加强融合。因此,我们找到了一种简单而有效的方法来提高深度和RGB方面的低质量输入的鲁棒性。对6D姿态估计的大量实验证明了我们的方法的有效性,特别是当输入中存在噪声时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信