Jina Cao, Chao-Chao Li, D. Huang, Huadong Zhang, Yongbo Liu, Xiao Yang
{"title":"Research of thermal management technology for battery of robot working in alpine region","authors":"Jina Cao, Chao-Chao Li, D. Huang, Huadong Zhang, Yongbo Liu, Xiao Yang","doi":"10.1109/CARPI.2016.7745654","DOIUrl":null,"url":null,"abstract":"As the power source of robot, the temperature characteristics of the lithium-ion battery directly affect the robot working performance. The thermal characteristics of lithium-ion battery have been intensively studied through both temperature rise tests and the discharging tests, and the PTC thermal management system of power battery was designed to enhance the performance of robot. Battery surface heat distribution demonstrated that battery surface temperature difference was less than 0.5°C because of aluminum thermal conductivity, and the discharging test showed that the PTC thermal management system could heat the lithium-ion battery pack effectively, which could deliver a capacity of 47Ah at -20°C, about 93% at 20°C.","PeriodicalId":104680,"journal":{"name":"2016 4th International Conference on Applied Robotics for the Power Industry (CARPI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Conference on Applied Robotics for the Power Industry (CARPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPI.2016.7745654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As the power source of robot, the temperature characteristics of the lithium-ion battery directly affect the robot working performance. The thermal characteristics of lithium-ion battery have been intensively studied through both temperature rise tests and the discharging tests, and the PTC thermal management system of power battery was designed to enhance the performance of robot. Battery surface heat distribution demonstrated that battery surface temperature difference was less than 0.5°C because of aluminum thermal conductivity, and the discharging test showed that the PTC thermal management system could heat the lithium-ion battery pack effectively, which could deliver a capacity of 47Ah at -20°C, about 93% at 20°C.