Constrained multi-rate state estimator incorporating delayed measurements

C. Srinesh, S. Narasimhan, Sriniketh Srinivasan, M. Amrhein, D. Bonvin
{"title":"Constrained multi-rate state estimator incorporating delayed measurements","authors":"C. Srinesh, S. Narasimhan, Sriniketh Srinivasan, M. Amrhein, D. Bonvin","doi":"10.1109/PC.2017.7976240","DOIUrl":null,"url":null,"abstract":"Frequent and accurate concentration estimates are important for the on-line control and optimization of chemical reaction systems. Such estimates can be obtained using state estimation methods that fuse frequent (fast) delay-free on-line measurements with infrequent (slow) delayed laboratory measurements. In this paper, we demonstrate how several recent advances made in state estimation can be combined in an on-line recursive state estimation framework by imposing knowledge-based and measurement-based constraints on the state estimates of multi-rate concentration measurements with time-varying time delays. This framework is illustrated using a simulated example for a bacterial batch fermentation of recombinant l. lactis. It is shown that an extent-based formulation gives more accurate estimates than a conventional concentration-based formulation.","PeriodicalId":377619,"journal":{"name":"2017 21st International Conference on Process Control (PC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference on Process Control (PC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PC.2017.7976240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Frequent and accurate concentration estimates are important for the on-line control and optimization of chemical reaction systems. Such estimates can be obtained using state estimation methods that fuse frequent (fast) delay-free on-line measurements with infrequent (slow) delayed laboratory measurements. In this paper, we demonstrate how several recent advances made in state estimation can be combined in an on-line recursive state estimation framework by imposing knowledge-based and measurement-based constraints on the state estimates of multi-rate concentration measurements with time-varying time delays. This framework is illustrated using a simulated example for a bacterial batch fermentation of recombinant l. lactis. It is shown that an extent-based formulation gives more accurate estimates than a conventional concentration-based formulation.
包含延迟测量的约束多速率状态估计器
频繁和准确的浓度估计对于化学反应系统的在线控制和优化是重要的。这种估计可以使用融合频繁(快速)无延迟在线测量和不频繁(缓慢)延迟实验室测量的状态估计方法来获得。在本文中,我们展示了如何通过对具有时变时滞的多速率浓度测量的状态估计施加基于知识和基于测量的约束,将状态估计方面的最新进展结合到在线递归状态估计框架中。这个框架是用一个模拟的例子来说明细菌分批发酵重组乳酸乳杆菌。结果表明,基于范围的公式比传统的基于浓度的公式给出更准确的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信