Improved algorithm of the Back Propagation neural network and its application in fault diagnosis of air-cooling condenser

Yong Li, Yang Fu, Siqi Zhang, Hui Li
{"title":"Improved algorithm of the Back Propagation neural network and its application in fault diagnosis of air-cooling condenser","authors":"Yong Li, Yang Fu, Siqi Zhang, Hui Li","doi":"10.1109/ICWAPR.2009.5207438","DOIUrl":null,"url":null,"abstract":"This paper addresses the application of neural network to air-cooling condenser faults diagnosis. For traditional Back Propagation (BP) neural network algorithm, the learning rate selection is depended on experience and trial. In this paper, an improved BP neural network algorithm with self adaptive learning rate is proposed using the fundamental equation. Unlike existing algorithm, self adaptive learning rate depends on only network topology, training samples, average quadratic error and error curve surface gradient but not artificial selection. The train results show iteration times is less than that of traditional algorithm with constant learning rate and it is a feasible method to diagnose air-cooling condenser faults.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper addresses the application of neural network to air-cooling condenser faults diagnosis. For traditional Back Propagation (BP) neural network algorithm, the learning rate selection is depended on experience and trial. In this paper, an improved BP neural network algorithm with self adaptive learning rate is proposed using the fundamental equation. Unlike existing algorithm, self adaptive learning rate depends on only network topology, training samples, average quadratic error and error curve surface gradient but not artificial selection. The train results show iteration times is less than that of traditional algorithm with constant learning rate and it is a feasible method to diagnose air-cooling condenser faults.
改进的反向传播神经网络算法及其在空冷冷凝器故障诊断中的应用
研究了神经网络在空冷冷凝器故障诊断中的应用。对于传统的BP神经网络算法,学习率的选择依赖于经验和尝试。本文利用基本方程,提出了一种具有自适应学习率的改进BP神经网络算法。与现有算法不同,自适应学习率仅依赖于网络拓扑结构、训练样本、平均二次误差和误差曲面梯度,而不依赖于人工选择。训练结果表明,该算法迭代次数少于传统算法,具有恒定的学习率,是一种可行的空冷冷凝器故障诊断方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信