Monocular multi-kernel based lane marking detection

Wenjie Lu, S. Rodriguez F, E. Seignez, R. Reynaud
{"title":"Monocular multi-kernel based lane marking detection","authors":"Wenjie Lu, S. Rodriguez F, E. Seignez, R. Reynaud","doi":"10.1109/CYBER.2014.6917447","DOIUrl":null,"url":null,"abstract":"Lane marking detection provides key information for scene understanding in structured environments. Such information has been widely exploited in Advanced Driving Assistance Systems and Autonomous Vehicle applications. This paper presents an enhanced lane marking detection approach intended for low-level perception. It relies on a multi-kernel detection framework with hierarchical weights. First, the detection strategy performs in Bird's Eye View (BEV) space and starts with an image filtering using a cell-based blob method. Then, lane marking parameters are optimized following a parabolic model. Finally, a self-assessment process provides an integrity indicator to improve the output performance of detection results. An evaluation using images from a public dataset confirms the effectiveness of the method.","PeriodicalId":183401,"journal":{"name":"The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER.2014.6917447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Lane marking detection provides key information for scene understanding in structured environments. Such information has been widely exploited in Advanced Driving Assistance Systems and Autonomous Vehicle applications. This paper presents an enhanced lane marking detection approach intended for low-level perception. It relies on a multi-kernel detection framework with hierarchical weights. First, the detection strategy performs in Bird's Eye View (BEV) space and starts with an image filtering using a cell-based blob method. Then, lane marking parameters are optimized following a parabolic model. Finally, a self-assessment process provides an integrity indicator to improve the output performance of detection results. An evaluation using images from a public dataset confirms the effectiveness of the method.
基于单目多核的车道标记检测
车道标记检测为结构化环境中的场景理解提供了关键信息。这些信息已被广泛应用于高级驾驶辅助系统和自动驾驶汽车应用中。本文提出了一种用于低级感知的增强车道标记检测方法。它依赖于具有分层权重的多核检测框架。首先,检测策略在鸟瞰(BEV)空间执行,并使用基于细胞的blob方法对图像进行滤波。然后,按照抛物线模型对车道标线参数进行优化。最后,自我评估过程提供了一个完整性指标,以提高检测结果的输出性能。使用来自公共数据集的图像进行评估,证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信