AUDIAS-CEU: A Language-independent approach for the Query-by-Example Spoken Term Detection task of the Search on Speech ALBAYZIN 2018 evaluation

Maria Cabello, D. Toledano, Javier Tejedor
{"title":"AUDIAS-CEU: A Language-independent approach for the Query-by-Example Spoken Term Detection task of the Search on Speech ALBAYZIN 2018 evaluation","authors":"Maria Cabello, D. Toledano, Javier Tejedor","doi":"10.21437/IBERSPEECH.2018-51","DOIUrl":null,"url":null,"abstract":"Query-by-Example Spoken Term Detection is the task of detecting query occurrences within speech data (henceforth utterances). Our submission is based on a language-independent template matching approach. First, queries and utterances are represented as phonetic posteriorgrams computed for English language with the phoneme decoder developed by the Brno Uni-versity of Technology. Next, the Subsequence Dynamic Time Warping algorithm with a modified Pearson correlation coefficient as cost measure is employed to hipothesize detections. Results on development data showed an ATWV=0.1774 with MAVIR data and an ATWV=0.0365 with RTVE data.","PeriodicalId":115963,"journal":{"name":"IberSPEECH Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IberSPEECH Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/IBERSPEECH.2018-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Query-by-Example Spoken Term Detection is the task of detecting query occurrences within speech data (henceforth utterances). Our submission is based on a language-independent template matching approach. First, queries and utterances are represented as phonetic posteriorgrams computed for English language with the phoneme decoder developed by the Brno Uni-versity of Technology. Next, the Subsequence Dynamic Time Warping algorithm with a modified Pearson correlation coefficient as cost measure is employed to hipothesize detections. Results on development data showed an ATWV=0.1774 with MAVIR data and an ATWV=0.0365 with RTVE data.
AUDIAS-CEU:一种独立于语言的基于实例查询的语音词检测方法
按例查询语音术语检测是检测语音数据(因此是语音)中的查询出现情况的任务。我们的提交基于一种与语言无关的模板匹配方法。首先,使用布尔诺理工大学开发的音素解码器将查询和话语表示为英语语言的语音后置图。其次,采用改进的Pearson相关系数作为代价度量的子序列动态时间翘曲算法对检测进行假设。发展数据的结果显示,MAVIR数据的ATWV=0.1774, RTVE数据的ATWV=0.0365。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信