A fractional order variational model for tracking the motion of objects in the applications of video surveillance

Pushpendra Kumar, Sanjeev Kumar, B. Raman
{"title":"A fractional order variational model for tracking the motion of objects in the applications of video surveillance","authors":"Pushpendra Kumar, Sanjeev Kumar, B. Raman","doi":"10.1109/ICACI.2016.7449814","DOIUrl":null,"url":null,"abstract":"Motion tracking of moving objects from a sequence of images is an active research area devoted to the applications of video surveillance. The motion estimation is performed by means of optical flow. In this paper, a fractional order variational model is presented for motion estimation. In particular, the proposed model generalizes the existing variational models from integer order to fractional order. More specific, the fractional order derivative describes discontinuous information about texture and edges, whereas integer order unable to do so, and therefore, a more suitable in estimating the optical flow. The Grünwald-Letnikov derivative is used as a discretization scheme to discretize the complex fractional order partial differential equations corresponding to the Euler-Lagrange equations. The resulting system of equations is solved by using the conjugate gradient method. Experimental results on various datasets verify the validity of the proposed model.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Motion tracking of moving objects from a sequence of images is an active research area devoted to the applications of video surveillance. The motion estimation is performed by means of optical flow. In this paper, a fractional order variational model is presented for motion estimation. In particular, the proposed model generalizes the existing variational models from integer order to fractional order. More specific, the fractional order derivative describes discontinuous information about texture and edges, whereas integer order unable to do so, and therefore, a more suitable in estimating the optical flow. The Grünwald-Letnikov derivative is used as a discretization scheme to discretize the complex fractional order partial differential equations corresponding to the Euler-Lagrange equations. The resulting system of equations is solved by using the conjugate gradient method. Experimental results on various datasets verify the validity of the proposed model.
分数阶变分模型在视频监控中的应用
从一系列图像中对运动物体进行运动跟踪是视频监控应用的一个活跃研究领域。运动估计采用光流方法进行。本文提出了一种分数阶变分运动估计模型。特别地,该模型将现有的变分模型从整数阶推广到分数阶。更具体地说,分数阶导数描述了纹理和边缘的不连续信息,而整数阶导数无法做到这一点,因此更适合于光流的估计。采用gr nwald- letnikov导数作为离散化格式对欧拉-拉格朗日方程对应的复分数阶偏微分方程进行离散化。用共轭梯度法求解得到的方程组。在不同数据集上的实验结果验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信