Hacking VMAF and VMAF NEG: Vulnerability to Different Preprocessing Methods

Maksim Siniukov, Anastasia Antsiferova, D. Kulikov, D. Vatolin
{"title":"Hacking VMAF and VMAF NEG: Vulnerability to Different Preprocessing Methods","authors":"Maksim Siniukov, Anastasia Antsiferova, D. Kulikov, D. Vatolin","doi":"10.1145/3508259.3508272","DOIUrl":null,"url":null,"abstract":"Video quality measurement plays a critical role in the development of video processing applications. In this paper, we show how popular quality metrics VMAF and its tuning-resistant version VMAF NEG can be artificially increased by video preprocessing. We propose a pipeline for tuning parameters of processing algorithms which allows to increase VMAF by up to 218.8%. A subjective comparison of preprocessed videos showed that with the majority of methods visual quality drops down or stays unchanged. We show that VMAF NEG scores can also be increased by some preprocessing methods by up to 21.9%.","PeriodicalId":259099,"journal":{"name":"Proceedings of the 2021 4th Artificial Intelligence and Cloud Computing Conference","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 4th Artificial Intelligence and Cloud Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508259.3508272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Video quality measurement plays a critical role in the development of video processing applications. In this paper, we show how popular quality metrics VMAF and its tuning-resistant version VMAF NEG can be artificially increased by video preprocessing. We propose a pipeline for tuning parameters of processing algorithms which allows to increase VMAF by up to 218.8%. A subjective comparison of preprocessed videos showed that with the majority of methods visual quality drops down or stays unchanged. We show that VMAF NEG scores can also be increased by some preprocessing methods by up to 21.9%.
攻击VMAF和VMAF NEG:不同预处理方法的漏洞
视频质量测量在视频处理应用的发展中起着至关重要的作用。在本文中,我们展示了如何通过视频预处理人为地提高流行的质量指标VMAF及其抗调优版本VMAF NEG。我们提出了一种调整处理算法参数的管道,可以将VMAF提高高达218.8%。对预处理视频的主观比较表明,大多数方法的视觉质量下降或保持不变。我们发现,通过一些预处理方法,VMAF NEG分数也可以提高21.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信