An improved biometric identification system based on heart sounds and Gaussian Mixture Models

F. Beritelli, Andrea Spadaccini
{"title":"An improved biometric identification system based on heart sounds and Gaussian Mixture Models","authors":"F. Beritelli, Andrea Spadaccini","doi":"10.1109/BIOMS.2010.5610442","DOIUrl":null,"url":null,"abstract":"This paper presents an evolution of a biometric identity verification system based on heart sounds. The system is built using Gaussian Mixture Models (GMMs) and uses features extracted both from the spectral domain and the time domain in order to improve the performance, measured in terms of Equal Error Rate (EER), with respect to similar systems. The best result obtained using our approach, computed over a database of 165 people, is an EER of 13,70 %, that outperforms other similar approaches.","PeriodicalId":179925,"journal":{"name":"2010 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOMS.2010.5610442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper presents an evolution of a biometric identity verification system based on heart sounds. The system is built using Gaussian Mixture Models (GMMs) and uses features extracted both from the spectral domain and the time domain in order to improve the performance, measured in terms of Equal Error Rate (EER), with respect to similar systems. The best result obtained using our approach, computed over a database of 165 people, is an EER of 13,70 %, that outperforms other similar approaches.
一种改进的基于心音和高斯混合模型的生物识别系统
本文介绍了一种基于心音的生物识别身份验证系统的发展。该系统使用高斯混合模型(GMMs)构建,并使用从谱域和时域提取的特征,以等效错误率(EER)衡量,相对于类似系统,以提高性能。使用我们的方法获得的最佳结果是,在165人的数据库中计算,EER为13.70%,优于其他类似方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信