Task Offloading and Resource Allocation Method for Edge Computing in Intelligent Coal Mining

Weijun Cheng, Xiaoshi Liu, Gaofeng Nie
{"title":"Task Offloading and Resource Allocation Method for Edge Computing in Intelligent Coal Mining","authors":"Weijun Cheng, Xiaoshi Liu, Gaofeng Nie","doi":"10.1109/ICCCWorkshops57813.2023.10233730","DOIUrl":null,"url":null,"abstract":"In the mining industry, the intelligentization of coal mining is the future development trend. However, the traditional centralized Internet of Things network model struggles to meet the interaction demands of intelligent devices in the context of intelligent coal mining. To address the the problem, we study the optimization strategies for underground edge computing based on the 6G network’s distributed architecture. We construct an intelligent coal mining edge computing architecture, considering the revenue maximization problem for multi-tasking with different requirements in underground scenarios. Finally, we propose a Joint Task Offloading and Resource Allocation for Revenue Maximization algorithm. Simulation experiments verify the advantages of our algorithm, including fast convergence speed and high system revenue.","PeriodicalId":201450,"journal":{"name":"2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops57813.2023.10233730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the mining industry, the intelligentization of coal mining is the future development trend. However, the traditional centralized Internet of Things network model struggles to meet the interaction demands of intelligent devices in the context of intelligent coal mining. To address the the problem, we study the optimization strategies for underground edge computing based on the 6G network’s distributed architecture. We construct an intelligent coal mining edge computing architecture, considering the revenue maximization problem for multi-tasking with different requirements in underground scenarios. Finally, we propose a Joint Task Offloading and Resource Allocation for Revenue Maximization algorithm. Simulation experiments verify the advantages of our algorithm, including fast convergence speed and high system revenue.
智能煤矿开采中边缘计算的任务卸载与资源分配方法
在采矿业中,煤矿开采的智能化是未来的发展趋势。然而,传统的集中式物联网网络模型难以满足智能采煤背景下智能设备的交互需求。为了解决这一问题,我们研究了基于6G网络分布式架构的地下边缘计算优化策略。构建了一种智能采煤边缘计算体系结构,考虑了地下场景下不同需求的多任务收益最大化问题。最后,我们提出了一种用于收益最大化的联合任务卸载和资源分配算法。仿真实验验证了该算法收敛速度快、系统收益高的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信