Approach to positional logic algebra

Mykola Kovalov
{"title":"Approach to positional logic algebra","authors":"Mykola Kovalov","doi":"10.20535/srit.2308-8893.2023.1.11","DOIUrl":null,"url":null,"abstract":"The method of Boolean function representation in terms of positional logic algebra in compact operator form is offered. Compared with the known method, it uses position operators with a complexity of no more than two and only one type of equivalent transformations. The method is less labor intensive. It allows parallelizing logic calculations. The corresponding way of Boolean function implementation is developed. It competes with some known ways in terms of hardware complexity, resource intensity, and speed when implemented on an FPGA basis. Possibilities open up for creating effective automating means of representing Boolean functions from a large number of variables, synthesizing the corresponding LCs, and improving modern element bases.","PeriodicalId":330635,"journal":{"name":"System research and information technologies","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"System research and information technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/srit.2308-8893.2023.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The method of Boolean function representation in terms of positional logic algebra in compact operator form is offered. Compared with the known method, it uses position operators with a complexity of no more than two and only one type of equivalent transformations. The method is less labor intensive. It allows parallelizing logic calculations. The corresponding way of Boolean function implementation is developed. It competes with some known ways in terms of hardware complexity, resource intensity, and speed when implemented on an FPGA basis. Possibilities open up for creating effective automating means of representing Boolean functions from a large number of variables, synthesizing the corresponding LCs, and improving modern element bases.
位置逻辑代数的方法
给出了用紧算子形式的位置逻辑代数表示布尔函数的方法。与已知方法相比,它使用了复杂度不超过两个的位置算子,并且只有一类等效变换。这种方法劳动强度较低。它允许并行逻辑计算。给出了相应的布尔函数实现方法。当在FPGA上实现时,它在硬件复杂性、资源强度和速度方面与一些已知的方法竞争。这为创建有效的自动化方法、从大量变量中表示布尔函数、综合相应的lc和改进现代元素库提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信