{"title":"A Unified Printed Circuit Board Routing Algorithm With Complicated Constraints and Differential Pairs","authors":"Ting-Chou Lin, Devon J. Merrill, Yen-Yi Wu, Chester Holtz, Chung-Kuan Cheng","doi":"10.1145/3394885.3431568","DOIUrl":null,"url":null,"abstract":"The printed circuit board (PCB) routing problem has been studied extensively in recent years. Due to continually growing net/pin counts, extremely high pin density, and unique physical constraints, the manual routing of PCBs has become a time-consuming task to reach design closure. Previous works break down the problem into escape routing and area routing and focus on these problems separately. However, there is always a gap between these two problems requiring a massive amount of human efforts to fine-tune the algorithms back and forth. Besides, previous works of area routing mainly focus on routing between escaping routed ball-grid-array (BGA) packages. Nevertheless, in practice, many components are not in the form of BGA packages, such as passive devices, decoupling capacitors, and through-hole pin arrays. To mitigate the deficiencies of previous works, we propose a full-board routing algorithm that can handle multiple real-world complicated constraints to facilitate the printed circuit board routing and produce high-quality manufacturable layouts. Experimental results show that our algorithm is effective and efficient. Specifically, for all given test cases, our router can achieve 100% routability without any design rule violation while the other two state-of-the-art routers fail to complete the routing for some test cases and incur design rule violations.","PeriodicalId":186307,"journal":{"name":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3394885.3431568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The printed circuit board (PCB) routing problem has been studied extensively in recent years. Due to continually growing net/pin counts, extremely high pin density, and unique physical constraints, the manual routing of PCBs has become a time-consuming task to reach design closure. Previous works break down the problem into escape routing and area routing and focus on these problems separately. However, there is always a gap between these two problems requiring a massive amount of human efforts to fine-tune the algorithms back and forth. Besides, previous works of area routing mainly focus on routing between escaping routed ball-grid-array (BGA) packages. Nevertheless, in practice, many components are not in the form of BGA packages, such as passive devices, decoupling capacitors, and through-hole pin arrays. To mitigate the deficiencies of previous works, we propose a full-board routing algorithm that can handle multiple real-world complicated constraints to facilitate the printed circuit board routing and produce high-quality manufacturable layouts. Experimental results show that our algorithm is effective and efficient. Specifically, for all given test cases, our router can achieve 100% routability without any design rule violation while the other two state-of-the-art routers fail to complete the routing for some test cases and incur design rule violations.