Image retrieval using scene graphs

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David A. Shamma, Michael S. Bernstein, Li Fei-Fei
{"title":"Image retrieval using scene graphs","authors":"Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David A. Shamma, Michael S. Bernstein, Li Fei-Fei","doi":"10.1109/CVPR.2015.7298990","DOIUrl":null,"url":null,"abstract":"This paper develops a novel framework for semantic image retrieval based on the notion of a scene graph. Our scene graphs represent objects (“man”, “boat”), attributes of objects (“boat is white”) and relationships between objects (“man standing on boat”). We use these scene graphs as queries to retrieve semantically related images. To this end, we design a conditional random field model that reasons about possible groundings of scene graphs to test images. The likelihoods of these groundings are used as ranking scores for retrieval. We introduce a novel dataset of 5,000 human-generated scene graphs grounded to images and use this dataset to evaluate our method for image retrieval. In particular, we evaluate retrieval using full scene graphs and small scene subgraphs, and show that our method outperforms retrieval methods that use only objects or low-level image features. In addition, we show that our full model can be used to improve object localization compared to baseline methods.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"890","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7298990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 890

Abstract

This paper develops a novel framework for semantic image retrieval based on the notion of a scene graph. Our scene graphs represent objects (“man”, “boat”), attributes of objects (“boat is white”) and relationships between objects (“man standing on boat”). We use these scene graphs as queries to retrieve semantically related images. To this end, we design a conditional random field model that reasons about possible groundings of scene graphs to test images. The likelihoods of these groundings are used as ranking scores for retrieval. We introduce a novel dataset of 5,000 human-generated scene graphs grounded to images and use this dataset to evaluate our method for image retrieval. In particular, we evaluate retrieval using full scene graphs and small scene subgraphs, and show that our method outperforms retrieval methods that use only objects or low-level image features. In addition, we show that our full model can be used to improve object localization compared to baseline methods.
使用场景图的图像检索
本文提出了一种基于场景图概念的语义图像检索框架。我们的场景图表示对象(“人”、“船”)、对象的属性(“船是白色的”)和对象之间的关系(“人站在船上”)。我们使用这些场景图作为查询来检索语义相关的图像。为此,我们设计了一个条件随机场模型,对场景图的可能接地进行推理来测试图像。这些接地的可能性被用作检索的排名分数。我们引入了一个由5000个基于图像的人工生成的场景图组成的新数据集,并使用该数据集来评估我们的图像检索方法。特别是,我们评估了使用完整场景图和小场景子图的检索,并表明我们的方法优于仅使用对象或低级图像特征的检索方法。此外,我们表明,与基线方法相比,我们的完整模型可用于改进目标定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信