{"title":"FlinkMan: Anomaly Detection in Manufacturing Equipment with Apache Flink: Grand Challenge","authors":"Nicolo Rivetti, Yann Busnel, A. Gal","doi":"10.1145/3093742.3095099","DOIUrl":null,"url":null,"abstract":"We present a (soft) real-time event-based anomaly detection application for manufacturing equipment, built on top of the general purpose stream processing framework Apache Flink. The anomaly detection involves multiple CPUs and/or memory intensive tasks, such as clustering on large time-based window and parsing input data in RDF-format. The main goal is to reduce end-to-end latencies, while handling high input throughput and still provide exact results. Given a truly distributed setting, this challenge also entails careful task and/or data parallelization and balancing. We propose FlinkMan, a system that offers a generic and efficient solution, which maximizes the usage of available cores and balances the load among them. We illustrates the accuracy and efficiency of FlinkMan, over a 3-step pipelined data stream analysis, that includes clustering, modeling and querying.","PeriodicalId":325666,"journal":{"name":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3093742.3095099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We present a (soft) real-time event-based anomaly detection application for manufacturing equipment, built on top of the general purpose stream processing framework Apache Flink. The anomaly detection involves multiple CPUs and/or memory intensive tasks, such as clustering on large time-based window and parsing input data in RDF-format. The main goal is to reduce end-to-end latencies, while handling high input throughput and still provide exact results. Given a truly distributed setting, this challenge also entails careful task and/or data parallelization and balancing. We propose FlinkMan, a system that offers a generic and efficient solution, which maximizes the usage of available cores and balances the load among them. We illustrates the accuracy and efficiency of FlinkMan, over a 3-step pipelined data stream analysis, that includes clustering, modeling and querying.