Classification of positron emission tomography brain images using first and second derivative features

Imene Garali, M. Adel, S. Bourennane, E. Guedj
{"title":"Classification of positron emission tomography brain images using first and second derivative features","authors":"Imene Garali, M. Adel, S. Bourennane, E. Guedj","doi":"10.1109/EUVIP.2016.7764598","DOIUrl":null,"url":null,"abstract":"Computer-Aided Diagnosis (CAD) for Positron Emission Tomography (PET) brain images is of importance for better quantifying and diagnosing neurodegenerative diseases like Alzheimer Disease (AD). This paper presents new features based on first and second derivatives, computed on brain PET images and aiming at better image classification in the case of AD. Brain images are first segmented into Volumes Of Interest (VOIs) using an atlas. To quantify the ability of features to separate AD from Healthy Control (HC), the orientation field for each VOI is studied. First, 3D gradient images are computed. First and second derivatives over each VOI is then computed. Inputting the mean, then the first and second derivatives features within VOIs into a Support Vector Machine (SVM) classifier, yields better classification accuracy rate than when inputting only the mean value as a feature.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Computer-Aided Diagnosis (CAD) for Positron Emission Tomography (PET) brain images is of importance for better quantifying and diagnosing neurodegenerative diseases like Alzheimer Disease (AD). This paper presents new features based on first and second derivatives, computed on brain PET images and aiming at better image classification in the case of AD. Brain images are first segmented into Volumes Of Interest (VOIs) using an atlas. To quantify the ability of features to separate AD from Healthy Control (HC), the orientation field for each VOI is studied. First, 3D gradient images are computed. First and second derivatives over each VOI is then computed. Inputting the mean, then the first and second derivatives features within VOIs into a Support Vector Machine (SVM) classifier, yields better classification accuracy rate than when inputting only the mean value as a feature.
正电子发射断层扫描脑图像的一阶和二阶导数特征分类
正电子发射断层扫描(PET)脑图像的计算机辅助诊断(CAD)对于更好地量化和诊断阿尔茨海默病(AD)等神经退行性疾病具有重要意义。本文提出了基于一阶导数和二阶导数的新特征,在脑PET图像上进行计算,目的是在AD情况下更好地进行图像分类。首先使用地图集将脑图像分割成感兴趣的体积(VOIs)。为了量化特征区分AD和健康控制(HC)的能力,研究了每个VOI的方向场。首先,对三维梯度图像进行计算。然后计算每个VOI的一阶和二阶导数。将voi中的均值,然后是一阶导数和二阶导数特征输入到支持向量机(SVM)分类器中,比仅将均值作为特征输入得到更好的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信