Hmm topology in continuous speech recognition systems

G. Yared, F. Violaro, A.M. Selmini
{"title":"Hmm topology in continuous speech recognition systems","authors":"G. Yared, F. Violaro, A.M. Selmini","doi":"10.1109/ITS.2006.4433354","DOIUrl":null,"url":null,"abstract":"Nowadays, HMM-based speech recognition systems are used in many real time processing applications, from cell phones to automobile automation. In this context, one important aspect to be considered is the HMM model size, which directly determines the computational load. So, in order to make the system practical, it is interesting to optimize the HMM model size constrained to a minimum acceptable recognition performance. Furthermore, topology optimization is also important for reliable parameter estimation. This work presents the new Gaussian Elimination Algorithm (GEA) for determining the more suitable HMM complexity in continuous speech recognition systems. The proposed method is evaluated on a small vocabulary continuous speech (SVCS) database as well as on the TIMIT corpus.","PeriodicalId":271294,"journal":{"name":"2006 International Telecommunications Symposium","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Telecommunications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2006.4433354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, HMM-based speech recognition systems are used in many real time processing applications, from cell phones to automobile automation. In this context, one important aspect to be considered is the HMM model size, which directly determines the computational load. So, in order to make the system practical, it is interesting to optimize the HMM model size constrained to a minimum acceptable recognition performance. Furthermore, topology optimization is also important for reliable parameter estimation. This work presents the new Gaussian Elimination Algorithm (GEA) for determining the more suitable HMM complexity in continuous speech recognition systems. The proposed method is evaluated on a small vocabulary continuous speech (SVCS) database as well as on the TIMIT corpus.
连续语音识别系统中的Hmm拓扑
如今,基于hmm的语音识别系统被用于许多实时处理应用,从手机到汽车自动化。在这种情况下,需要考虑的一个重要方面是HMM模型的大小,它直接决定了计算负荷。因此,为了使系统实用,将HMM模型大小优化到最小可接受的识别性能是一个有趣的问题。此外,拓扑优化对于可靠的参数估计也很重要。本文提出了一种新的高斯消去算法(GEA),用于确定连续语音识别系统中更合适的HMM复杂度。在小词汇量连续语音(SVCS)数据库和TIMIT语料库上对该方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信