Combining K-means and particle swarm optimization for dynamic data clustering problems

Yucheng Kao, Szu-Yuan Lee
{"title":"Combining K-means and particle swarm optimization for dynamic data clustering problems","authors":"Yucheng Kao, Szu-Yuan Lee","doi":"10.1109/ICICISYS.2009.5358020","DOIUrl":null,"url":null,"abstract":"This paper presents a new dynamic data clustering algorithm based on K-means and Combinatorial Particle Swarm Optimization, called KCPSO. Unlike the traditional K-means method, KCPSO does not need a specific number of clusters given before performing the clustering process and is able to find the optimal number of clusters during the clustering process. In each iteration of KCPSO, a discrete PSO is used to optimize the number of clusters with which the K-means is used to find the best clustering result. KCPSO has been developed into a software system and evaluated by testing some datasets. Encouraging results show that KCPSO is an effective algorithm for solving dynamic clustering problems.","PeriodicalId":206575,"journal":{"name":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2009.5358020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

This paper presents a new dynamic data clustering algorithm based on K-means and Combinatorial Particle Swarm Optimization, called KCPSO. Unlike the traditional K-means method, KCPSO does not need a specific number of clusters given before performing the clustering process and is able to find the optimal number of clusters during the clustering process. In each iteration of KCPSO, a discrete PSO is used to optimize the number of clusters with which the K-means is used to find the best clustering result. KCPSO has been developed into a software system and evaluated by testing some datasets. Encouraging results show that KCPSO is an effective algorithm for solving dynamic clustering problems.
结合k -均值和粒子群算法求解动态数据聚类问题
提出了一种基于k均值和组合粒子群算法的动态数据聚类算法KCPSO。与传统的K-means方法不同,KCPSO在进行聚类过程之前不需要给定特定的聚类数量,而是能够在聚类过程中找到最优的聚类数量。在KCPSO的每次迭代中,使用离散PSO来优化聚类的数量,并使用K-means来找到最佳聚类结果。KCPSO已开发成一个软件系统,并通过测试一些数据集进行了评估。令人鼓舞的结果表明,KCPSO是解决动态聚类问题的有效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信