{"title":"Combining K-means and particle swarm optimization for dynamic data clustering problems","authors":"Yucheng Kao, Szu-Yuan Lee","doi":"10.1109/ICICISYS.2009.5358020","DOIUrl":null,"url":null,"abstract":"This paper presents a new dynamic data clustering algorithm based on K-means and Combinatorial Particle Swarm Optimization, called KCPSO. Unlike the traditional K-means method, KCPSO does not need a specific number of clusters given before performing the clustering process and is able to find the optimal number of clusters during the clustering process. In each iteration of KCPSO, a discrete PSO is used to optimize the number of clusters with which the K-means is used to find the best clustering result. KCPSO has been developed into a software system and evaluated by testing some datasets. Encouraging results show that KCPSO is an effective algorithm for solving dynamic clustering problems.","PeriodicalId":206575,"journal":{"name":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2009.5358020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
This paper presents a new dynamic data clustering algorithm based on K-means and Combinatorial Particle Swarm Optimization, called KCPSO. Unlike the traditional K-means method, KCPSO does not need a specific number of clusters given before performing the clustering process and is able to find the optimal number of clusters during the clustering process. In each iteration of KCPSO, a discrete PSO is used to optimize the number of clusters with which the K-means is used to find the best clustering result. KCPSO has been developed into a software system and evaluated by testing some datasets. Encouraging results show that KCPSO is an effective algorithm for solving dynamic clustering problems.