Statistical LIP modelling for visual speech recognition

J. Luettin, N. Thacker, S. W. Beet
{"title":"Statistical LIP modelling for visual speech recognition","authors":"J. Luettin, N. Thacker, S. W. Beet","doi":"10.5281/ZENODO.36365","DOIUrl":null,"url":null,"abstract":"We describe a speechreading (lipreading) system purely based on visual features extracted from grey level image sequences of the speaker's lips. Active shape models are used to track the lip contours while visual speech information is extracted from the shape of the contours. The distribution and temporal dependencies of the shape features are modelled by continuous density Hidden Markov Models. Experiments are reported for speaker independent recognition tests of isolated digits. The analysis of individual feature components suggests that speech relevant information is embedded in a low dimensional space and fairly robust to inter- and intra-speaker variability.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.36365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

We describe a speechreading (lipreading) system purely based on visual features extracted from grey level image sequences of the speaker's lips. Active shape models are used to track the lip contours while visual speech information is extracted from the shape of the contours. The distribution and temporal dependencies of the shape features are modelled by continuous density Hidden Markov Models. Experiments are reported for speaker independent recognition tests of isolated digits. The analysis of individual feature components suggests that speech relevant information is embedded in a low dimensional space and fairly robust to inter- and intra-speaker variability.
视觉语音识别的统计LIP建模
我们描述了一个纯粹基于从说话者嘴唇灰度图像序列中提取的视觉特征的语音读(唇读)系统。主动形状模型用于跟踪唇轮廓,同时从轮廓形状中提取视觉语音信息。利用连续密度隐马尔可夫模型对形状特征的分布和时间依赖性进行建模。本文报道了独立于说话人的孤立数字识别实验。对单个特征分量的分析表明,语音相关信息嵌入在低维空间中,对说话人之间和说话人内部的变化具有相当强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信