Analysis of BDDC algorithms for Stokes problems with hybridizable discontinuous Galerkin discretizations

Xuemin Tu, Bin Wang, Jinjin Zhang
{"title":"Analysis of BDDC algorithms for Stokes problems with hybridizable discontinuous Galerkin discretizations","authors":"Xuemin Tu, Bin Wang, Jinjin Zhang","doi":"10.1553/etna_vol52s553","DOIUrl":null,"url":null,"abstract":"The BDDC (balancing domain decomposition by constraints) methods have been applied to solve the saddle point problem arising from a hybridizable discontinuous Galerkin (HDG) discretization of the incompressible Stokes problem. In the BDDC algorithms, the coarse problem is composed by the edge/face constraints across the subdomain interface for each velocity component. As for the standard approaches of the BDDC algorithms for saddle point problems, these constraints ensure that the BDDC preconditioned conjugate gradient (CG) iterations stay in a subspace where the preconditioned operator is positive definite. However, there are several popular choices of the local stabilization parameters used in the HDG discretizations. Different stabilization parameters change the properties of the resulting discretized operators, and some special observations and tools are needed in the analysis of the condition numbers of the BDDC preconditioned Stokes operators. In this paper, condition number estimates for different choices of stabilization parameters are provided. Numerical experiments confirm the theory.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol52s553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The BDDC (balancing domain decomposition by constraints) methods have been applied to solve the saddle point problem arising from a hybridizable discontinuous Galerkin (HDG) discretization of the incompressible Stokes problem. In the BDDC algorithms, the coarse problem is composed by the edge/face constraints across the subdomain interface for each velocity component. As for the standard approaches of the BDDC algorithms for saddle point problems, these constraints ensure that the BDDC preconditioned conjugate gradient (CG) iterations stay in a subspace where the preconditioned operator is positive definite. However, there are several popular choices of the local stabilization parameters used in the HDG discretizations. Different stabilization parameters change the properties of the resulting discretized operators, and some special observations and tools are needed in the analysis of the condition numbers of the BDDC preconditioned Stokes operators. In this paper, condition number estimates for different choices of stabilization parameters are provided. Numerical experiments confirm the theory.
杂化不连续Galerkin离散Stokes问题的BDDC算法分析
采用约束平衡域分解(BDDC)方法求解不可压缩Stokes问题的混合不连续Galerkin离散所引起的鞍点问题。在BDDC算法中,粗问题由每个速度分量跨子域接口的边/面约束组成。对于鞍点问题的BDDC算法的标准方法,这些约束保证了BDDC预条件共轭梯度(CG)迭代停留在预条件算子为正定的子空间中。然而,在HDG离散化中,有几种常用的局部稳定参数选择。不同的稳定参数会改变离散算子的性质,在分析BDDC预置Stokes算子的条件数时,需要一些特殊的观测和工具。本文给出了不同镇定参数选择下的条件数估计。数值实验证实了这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信