Recommendation systems: a probabilistic analysis

Ravi Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins
{"title":"Recommendation systems: a probabilistic analysis","authors":"Ravi Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins","doi":"10.1109/SFCS.1998.743517","DOIUrl":null,"url":null,"abstract":"A recommendation system tracks past actions of a group of users to make recommendations to individual members of the group. The growth of computer-mediated marketing and commerce has led to increased interest in such systems. We introduce a simple analytical framework for recommendation systems, including a basis for defining the utility of such a system. We perform probabilistic analyses of algorithmic methods within this framework. These analyses yield insights into how much utility can be derived from the memory of past actions and on how this memory can be exploited.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

Abstract

A recommendation system tracks past actions of a group of users to make recommendations to individual members of the group. The growth of computer-mediated marketing and commerce has led to increased interest in such systems. We introduce a simple analytical framework for recommendation systems, including a basis for defining the utility of such a system. We perform probabilistic analyses of algorithmic methods within this framework. These analyses yield insights into how much utility can be derived from the memory of past actions and on how this memory can be exploited.
推荐系统:一个概率分析
推荐系统跟踪一组用户过去的行为,向组中的单个成员提出推荐。以计算机为媒介的市场营销和商业的发展使人们对这类系统的兴趣日益浓厚。我们为推荐系统引入了一个简单的分析框架,包括定义这种系统效用的基础。我们在此框架内对算法方法进行概率分析。通过这些分析,我们可以了解到从过去行为的记忆中可以获得多少效用,以及如何利用这种记忆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信