Multi-instance Cancelable Biometric System using Convolutional Neural Network

Tanuja Sudhakar, M. Gavrilova
{"title":"Multi-instance Cancelable Biometric System using Convolutional Neural Network","authors":"Tanuja Sudhakar, M. Gavrilova","doi":"10.1109/CW.2019.00054","DOIUrl":null,"url":null,"abstract":"Cancelable or Revocable biometrics is a recent trend to safeguard a biometric system from a variety of attacks. In this paper, we propose a cancelable system in which iris features are extracted through deep learning and then converted into a cancelable biometric template through random projection method. We then adopt another machine learning algorithm - Support Vector Machine for optimal biometric authentication after performing comparitive analysis over 3 alternative classifiers. The proposed system provides better template security and improves identification accuracy. As per our knowledge, this combination of deep learning and random projection technique has been employed for the first time. The paper presents an extensive validation of the proposed methodology on two multi-instance iris databases.","PeriodicalId":117409,"journal":{"name":"2019 International Conference on Cyberworlds (CW)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2019.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cancelable or Revocable biometrics is a recent trend to safeguard a biometric system from a variety of attacks. In this paper, we propose a cancelable system in which iris features are extracted through deep learning and then converted into a cancelable biometric template through random projection method. We then adopt another machine learning algorithm - Support Vector Machine for optimal biometric authentication after performing comparitive analysis over 3 alternative classifiers. The proposed system provides better template security and improves identification accuracy. As per our knowledge, this combination of deep learning and random projection technique has been employed for the first time. The paper presents an extensive validation of the proposed methodology on two multi-instance iris databases.
基于卷积神经网络的多实例可取消生物识别系统
可取消或可撤销的生物识别技术是保护生物识别系统免受各种攻击的最新趋势。在本文中,我们提出了一种可取消系统,该系统通过深度学习提取虹膜特征,然后通过随机投影方法将虹膜特征转换为可取消的生物特征模板。然后,我们采用另一种机器学习算法-支持向量机进行最优生物识别认证,并对3种可选分类器进行比较分析。该系统提供了更好的模板安全性,提高了模板识别的准确性。据我们所知,这种深度学习和随机投影技术的结合是首次使用。本文在两个多实例虹膜数据库上对所提出的方法进行了广泛的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信