P. A. A. Aguiar, Clodomir Joaquim de Santana Júnior, C. B. Bastos Filho
{"title":"Aplicação de Algoritmos de Clusterização em uma Base de Dados de Reservas de Hotéis","authors":"P. A. A. Aguiar, Clodomir Joaquim de Santana Júnior, C. B. Bastos Filho","doi":"10.25286/REPA.V3I3.945","DOIUrl":null,"url":null,"abstract":"Este artigo faz uma análise da aplicação dos algoritmos de clusterização K-Means e Fuzzy C-Means. O estudo de caso visa identificar perfis de clientes de uma agência de viagens online, com o objetivo de melhorar a eficácia do envio de ofertas através de e-mail marketing, possibilitando o envio de anúncios personalizados para cada perfil. O processo de clusterização foi feito baseado na similaridade entre os usuários, levando em conta 13 características extraídas das vendas dos clientes. O resultado mostra que, apesar de chegaram a grupos parecidos, o K-Means teve desempenho levemente superior ao Fuzzy C-Means, no que diz respeito a avaliação através da métrica de estatística Gap.","PeriodicalId":331078,"journal":{"name":"Revista de Engenharia e Pesquisa Aplicada","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Engenharia e Pesquisa Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25286/REPA.V3I3.945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Este artigo faz uma análise da aplicação dos algoritmos de clusterização K-Means e Fuzzy C-Means. O estudo de caso visa identificar perfis de clientes de uma agência de viagens online, com o objetivo de melhorar a eficácia do envio de ofertas através de e-mail marketing, possibilitando o envio de anúncios personalizados para cada perfil. O processo de clusterização foi feito baseado na similaridade entre os usuários, levando em conta 13 características extraídas das vendas dos clientes. O resultado mostra que, apesar de chegaram a grupos parecidos, o K-Means teve desempenho levemente superior ao Fuzzy C-Means, no que diz respeito a avaliação através da métrica de estatística Gap.