{"title":"Reliability modeling incorporating error processes for Internet-distributed software","authors":"J. Lo, S. Kuo, Chin-Yu Huang","doi":"10.1109/TENCON.2001.949540","DOIUrl":null,"url":null,"abstract":"The paper proposes several improvements to conventional software reliability growth models (SRGMs) to describe actual software development processes by eliminating an unrealistic assumption that detected errors are immediately corrected. A key part of the proposed models is the \"delay-effect factor\", which measures the expected time lag in correcting the detected faults during software development. To establish the proposed model, we first determine the delay-effect factor to be included In the actual correction process. For the conventional SRGMs, the delay-effect factor is basically non-decreasing. This means that the delayed effect becomes more significant as time moves forward. Since this phenomenon may not be reasonable for some applications, we adopt a bell-shaped curve to reflect the human learning process in our proposed model. Experiments on a real data set for Internet-distributed software has been performed, and the results show that the proposed new model gives better performance in estimating the number of initial faults than previous approaches.","PeriodicalId":358168,"journal":{"name":"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2001.949540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The paper proposes several improvements to conventional software reliability growth models (SRGMs) to describe actual software development processes by eliminating an unrealistic assumption that detected errors are immediately corrected. A key part of the proposed models is the "delay-effect factor", which measures the expected time lag in correcting the detected faults during software development. To establish the proposed model, we first determine the delay-effect factor to be included In the actual correction process. For the conventional SRGMs, the delay-effect factor is basically non-decreasing. This means that the delayed effect becomes more significant as time moves forward. Since this phenomenon may not be reasonable for some applications, we adopt a bell-shaped curve to reflect the human learning process in our proposed model. Experiments on a real data set for Internet-distributed software has been performed, and the results show that the proposed new model gives better performance in estimating the number of initial faults than previous approaches.