Parallel Shortest Paths with Negative Edge Weights

Nairen Cao, Jeremy T. Fineman, Katina Russell
{"title":"Parallel Shortest Paths with Negative Edge Weights","authors":"Nairen Cao, Jeremy T. Fineman, Katina Russell","doi":"10.1145/3490148.3538583","DOIUrl":null,"url":null,"abstract":"This paper presents a parallel version of Goldberg's algorithm for the problem of single-source shortest paths with integer (including negatives) edge weights. Given an input graph with n vertices, m edges, and integer weights ≥-N, our algorithms solves the problem with Õ(m √n log N) work and n5/4+o(1) log N span, both with high probability. Our algorithm thus has work similar to Goldberg's algorithm while also achieving at least m1/4-o(1) parallelism. To generate our parallel version of Goldberg's algorithm, we solve two specific distance-limited shortest-path problems, both with work Õ(m) and span √L · n1/2+o(1), where L is the distance limit.","PeriodicalId":112865,"journal":{"name":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490148.3538583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a parallel version of Goldberg's algorithm for the problem of single-source shortest paths with integer (including negatives) edge weights. Given an input graph with n vertices, m edges, and integer weights ≥-N, our algorithms solves the problem with Õ(m √n log N) work and n5/4+o(1) log N span, both with high probability. Our algorithm thus has work similar to Goldberg's algorithm while also achieving at least m1/4-o(1) parallelism. To generate our parallel version of Goldberg's algorithm, we solve two specific distance-limited shortest-path problems, both with work Õ(m) and span √L · n1/2+o(1), where L is the distance limit.
具有负边权的平行最短路径
本文针对边权为整数(包括负)的单源最短路径问题,提出了一种并行版本的Goldberg算法。给定一个n个顶点,m条边,整数权值≥-N的输入图,我们的算法以Õ(m√n log n)的工作量和n5/4+o(1) log n的空间解决问题,两者都具有高概率。因此,我们的算法在实现至少m1/4- 0(1)并行性的同时,其工作原理与Goldberg的算法相似。为了生成我们的并行版本的Goldberg算法,我们解决了两个特定的距离限制的最短路径问题,这两个问题都有功Õ(m)和跨度√L·n1/2+o(1),其中L是距离限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信