Partial degree formulae for rational algebraic surfaces

S. Pérez-Díaz, J. Sendra
{"title":"Partial degree formulae for rational algebraic surfaces","authors":"S. Pérez-Díaz, J. Sendra","doi":"10.1145/1073884.1073926","DOIUrl":null,"url":null,"abstract":"In this paper, we present formulae for the computation of the partial degrees w.r.t. each variable of the implicit equation of a rational surface given by means of a proper parametrization. Moreover, when the parametrization is not proper we give upper bounds. These formulae generalize the results in [17] to the surface case, and they are based on the computation of the degree of the rational maps induced by the projections, onto the coordinate planes of the three dimensional space, of the input surface parametrization. In addition, using the results presented in [9] and [10], the formulae simply involve the computation of the degree of univariate polynomials directed determined from the parametrization by means of some univariate resultants and some polynomial gcds.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we present formulae for the computation of the partial degrees w.r.t. each variable of the implicit equation of a rational surface given by means of a proper parametrization. Moreover, when the parametrization is not proper we give upper bounds. These formulae generalize the results in [17] to the surface case, and they are based on the computation of the degree of the rational maps induced by the projections, onto the coordinate planes of the three dimensional space, of the input surface parametrization. In addition, using the results presented in [9] and [10], the formulae simply involve the computation of the degree of univariate polynomials directed determined from the parametrization by means of some univariate resultants and some polynomial gcds.
有理代数曲面的偏次公式
本文给出了用适当参数化方法给出有理曲面隐式方程各变量的偏度w.r.t.的计算公式。此外,当参数化不适当时,我们给出了上界。这些公式将[17]中的结果推广到曲面情况,它们是基于输入曲面参数化在三维空间的坐标平面上的投影所引起的有理映射的程度的计算。此外,利用[9]和[10]给出的结果,公式只涉及计算由参数化确定的单变量多项式的阶数,通过一些单变量结果和一些多项式gcd。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信