{"title":"Equivalence","authors":"Alice Leal","doi":"10.4324/9781315678481-15","DOIUrl":null,"url":null,"abstract":"A $ \\mathrm{f}\\mathrm{i}_{11\\mathrm{a}l}1\\mathrm{C}\\mathrm{e}$ automaton is a sixtuple $ <\\Sigma$ , Q. $ \\delta.S,$ $F,$ $f >$ , where $ <\\Sigma$ . Q. $ \\delta$ . S. $F >$ is a finite automaton, $f$ : $Q \\mathrm{x}\\Sigma \\mathrm{x}Q-R\\cup\\{-\\infty\\}$ is a finance function. $R$ is the set of real nulnbers and it holds $f(q,a,q)J=- \\infty 1\\mathrm{f}\\mathrm{f}\\sim q’\\not\\in\\delta(q, \\mathit{0})$ . The function $f$ is extended to $f$ : $2 ^{Q}\\mathrm{x}\\Sigma^{*}\\mathrm{x}2^{Q}arrow R\\cup\\{-\\infty)\\}$ by the plus-max principle. For any $u$ ) $ \\in\\underline{\\nabla}^{\\pi}$ . $f(S. \\mathrm{t}L. F)$ is the profit of $w$ . It is shown that the equivalence problem of finitely ambiguous finance automata is decidable.","PeriodicalId":133492,"journal":{"name":"The Routledge Handbook of Translation and Philosophy","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Routledge Handbook of Translation and Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9781315678481-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 92
Abstract
A $ \mathrm{f}\mathrm{i}_{11\mathrm{a}l}1\mathrm{C}\mathrm{e}$ automaton is a sixtuple $ <\Sigma$ , Q. $ \delta.S,$ $F,$ $f >$ , where $ <\Sigma$ . Q. $ \delta$ . S. $F >$ is a finite automaton, $f$ : $Q \mathrm{x}\Sigma \mathrm{x}Q-R\cup\{-\infty\}$ is a finance function. $R$ is the set of real nulnbers and it holds $f(q,a,q)J=- \infty 1\mathrm{f}\mathrm{f}\sim q’\not\in\delta(q, \mathit{0})$ . The function $f$ is extended to $f$ : $2 ^{Q}\mathrm{x}\Sigma^{*}\mathrm{x}2^{Q}arrow R\cup\{-\infty)\}$ by the plus-max principle. For any $u$ ) $ \in\underline{\nabla}^{\pi}$ . $f(S. \mathrm{t}L. F)$ is the profit of $w$ . It is shown that the equivalence problem of finitely ambiguous finance automata is decidable.