A Wireless, Multielectrode, User-generic Ear EEG Recording System

Ryan Kaveh, Justin Doong, Andy Zhou, Carolyn Schwendeman, K. Gopalan, F. Burghardt, A. Arias, M. Maharbiz, R. Muller
{"title":"A Wireless, Multielectrode, User-generic Ear EEG Recording System","authors":"Ryan Kaveh, Justin Doong, Andy Zhou, Carolyn Schwendeman, K. Gopalan, F. Burghardt, A. Arias, M. Maharbiz, R. Muller","doi":"10.1109/BIOCAS.2019.8918700","DOIUrl":null,"url":null,"abstract":"Recently it has been demonstrated that electroencephalography (EEG) can be recorded from the ear canal (in-ear EEG), opening the door to using discreet earpieces as wearable brain-computer interfaces (BCIs). We present, for the first time to our knowledge, a wireless neural recording platform for recording EEG from the ear canal with dry multielectrode, user-generic earpieces. A low-cost manufacturing process involving vacuum forming and spray coating was developed to improve ear canal contact in a range of users and combined with a 2.5 x 2.5 cm2 wireless recording system. System performance was evaluated through electrode-skin interface (ESI) impedance characterization and measurement of common EEG signals simultaneously with wet scalp EEG, including eye blinks, alpha waves, and the auditory steady-state response (ASSR) across multiple users. The user-generic ear EEG recorded a mean alpha modulation of 2.17, outperforming the state-of-the-art.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8918700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Recently it has been demonstrated that electroencephalography (EEG) can be recorded from the ear canal (in-ear EEG), opening the door to using discreet earpieces as wearable brain-computer interfaces (BCIs). We present, for the first time to our knowledge, a wireless neural recording platform for recording EEG from the ear canal with dry multielectrode, user-generic earpieces. A low-cost manufacturing process involving vacuum forming and spray coating was developed to improve ear canal contact in a range of users and combined with a 2.5 x 2.5 cm2 wireless recording system. System performance was evaluated through electrode-skin interface (ESI) impedance characterization and measurement of common EEG signals simultaneously with wet scalp EEG, including eye blinks, alpha waves, and the auditory steady-state response (ASSR) across multiple users. The user-generic ear EEG recorded a mean alpha modulation of 2.17, outperforming the state-of-the-art.
一种无线、多电极、用户通用耳脑电图记录系统
最近有研究表明,脑电图(EEG)可以从耳道(耳内EEG)记录下来,这为使用谨慎的耳机作为可穿戴的脑机接口(bci)打开了大门。据我们所知,我们首次提出了一种无线神经记录平台,用于使用干式多电极用户通用耳机从耳道记录脑电图。开发了一种低成本的制造工艺,包括真空成型和喷涂,以改善一系列用户的耳道接触,并结合2.5 x 2.5 cm2的无线录音系统。通过电极-皮肤界面(ESI)阻抗表征和同时测量常见脑电图信号(包括多个用户的眨眼、α波和听觉稳态响应(ASSR))来评估系统性能。用户通用耳脑电图记录的平均α调制为2.17,优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信