{"title":"Decidability in the Logic of Subsequences and Supersequences","authors":"Prateek Karandikar, P. Schnoebelen","doi":"10.4230/LIPIcs.FSTTCS.2015.84","DOIUrl":null,"url":null,"abstract":"We consider first-order logics of sequences ordered by the subsequence ordering, aka sequence embedding. We show that the \\Sigma_2 theory is undecidable, answering a question left open by Kuske. Regarding fragments with a bounded number of variables, we show that the FO2 theory is decidable while the FO3 theory is undecidable.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSTTCS.2015.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We consider first-order logics of sequences ordered by the subsequence ordering, aka sequence embedding. We show that the \Sigma_2 theory is undecidable, answering a question left open by Kuske. Regarding fragments with a bounded number of variables, we show that the FO2 theory is decidable while the FO3 theory is undecidable.