Mobile E-Commerce Data Processing Using Relational Memory

P. Aarabi
{"title":"Mobile E-Commerce Data Processing Using Relational Memory","authors":"P. Aarabi","doi":"10.1109/ICDMW.2017.125","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a very simple method for learning relationships between events by accounting for the spatial or temporal sequence of occurrence of the events. The underlying idea behind our proposed method is that for certain data processing application, such as data collected from retail shoppers, relational access to data is more useful and immediately informative than sequential access. We apply the proposed RElational Memory (REM) model on a large retail data consisting of 24,193 shoppers and 915 purchases using a popular mobile retailing iOS app. We illustrate how temporal relativity can play a role in determining the relationships between user actions.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a very simple method for learning relationships between events by accounting for the spatial or temporal sequence of occurrence of the events. The underlying idea behind our proposed method is that for certain data processing application, such as data collected from retail shoppers, relational access to data is more useful and immediately informative than sequential access. We apply the proposed RElational Memory (REM) model on a large retail data consisting of 24,193 shoppers and 915 purchases using a popular mobile retailing iOS app. We illustrate how temporal relativity can play a role in determining the relationships between user actions.
基于关系记忆的移动电子商务数据处理
在本文中,我们提出了一种非常简单的方法,通过考虑事件发生的空间或时间顺序来学习事件之间的关系。我们提出的方法背后的基本思想是,对于某些数据处理应用程序(例如从零售购物者收集的数据),对数据的关系访问比顺序访问更有用,更能立即提供信息。我们将提出的关系记忆(REM)模型应用于一个由24,193名购物者和915次购买组成的大型零售数据上,使用一个流行的移动零售iOS应用程序。我们说明了时间相对论如何在确定用户行为之间的关系中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信