Video object segmentation with shortest path

Bao Zhang, Handong Zhao, Xiaochun Cao
{"title":"Video object segmentation with shortest path","authors":"Bao Zhang, Handong Zhao, Xiaochun Cao","doi":"10.1145/2393347.2396316","DOIUrl":null,"url":null,"abstract":"Unsupervised video object segmentation is to automatically segment the foreground object in the video without any prior knowledge. This paper proposes an object-level method to segment foreground object, while existing methods are normally based on low level information. We firstly find all the object-like regions. Then based on the corresponding map between the successive frames, the video segmentation problem is converted to graph model one. Rather than adopting TRW-S which might result in a local optimal solution, a shortest path algorithm is explored to get a globally optimum solution. Compared with the state-of-the-art object-level method, our method not only guarantees the continuity of segmentation result but also works well even under the big disturbance of fast motion object in the background. The experimental results on two open datasets (SegTrack and Berkeley Motion Segmentation Dataset) and video sequences captured by ourselves demonstrate the effectiveness of our method.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2396316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Unsupervised video object segmentation is to automatically segment the foreground object in the video without any prior knowledge. This paper proposes an object-level method to segment foreground object, while existing methods are normally based on low level information. We firstly find all the object-like regions. Then based on the corresponding map between the successive frames, the video segmentation problem is converted to graph model one. Rather than adopting TRW-S which might result in a local optimal solution, a shortest path algorithm is explored to get a globally optimum solution. Compared with the state-of-the-art object-level method, our method not only guarantees the continuity of segmentation result but also works well even under the big disturbance of fast motion object in the background. The experimental results on two open datasets (SegTrack and Berkeley Motion Segmentation Dataset) and video sequences captured by ourselves demonstrate the effectiveness of our method.
基于最短路径的视频对象分割
无监督视频对象分割是在没有任何先验知识的情况下,对视频中前景对象进行自动分割。本文提出了一种对象级的前景目标分割方法,而现有的方法通常是基于低层次信息。我们首先找到所有类物体区域。然后根据连续帧之间的对应关系,将视频分割问题转化为图模型问题。采用TRW-S算法求解全局最优解,而不是采用TRW-S算法求解局部最优解。与目前最先进的对象级分割方法相比,该方法不仅保证了分割结果的连续性,而且在背景中快速运动物体的较大干扰下也能很好地进行分割。在两个开放数据集(SegTrack和Berkeley运动分割数据集)和我们自己捕获的视频序列上的实验结果证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信