Triangulation and display of rational parametric surfaces

C. Bajaj, A. Royappa
{"title":"Triangulation and display of rational parametric surfaces","authors":"C. Bajaj, A. Royappa","doi":"10.1109/VISUAL.1994.346335","DOIUrl":null,"url":null,"abstract":"We present a comprehensive algorithm to construct a topologically correct triangulation of the real affine part of a rational parametric surface with few restrictions on the defining rational functions. The rational functions are allowed to be undefined on domain curves (pole curves) and at certain special points (base points), and the surface is allowed to have nodal or cuspidal self-intersections. We also recognize that for a complete display, some real points on the parametric surface may be generated only by complex parameter values, and that some finite points on the surface may be generated only by infinite parameter values; we show how to compensate for these conditions. Our techniques for handling these problems have applications in scientific visualization, rendering non-standard NURBS, and in finite-element mesh generation.<<ETX>>","PeriodicalId":273215,"journal":{"name":"Proceedings Visualization '94","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Visualization '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.1994.346335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We present a comprehensive algorithm to construct a topologically correct triangulation of the real affine part of a rational parametric surface with few restrictions on the defining rational functions. The rational functions are allowed to be undefined on domain curves (pole curves) and at certain special points (base points), and the surface is allowed to have nodal or cuspidal self-intersections. We also recognize that for a complete display, some real points on the parametric surface may be generated only by complex parameter values, and that some finite points on the surface may be generated only by infinite parameter values; we show how to compensate for these conditions. Our techniques for handling these problems have applications in scientific visualization, rendering non-standard NURBS, and in finite-element mesh generation.<>
有理参数曲面的三角剖分和显示
提出了一种构造有理参数曲面的实仿射部分拓扑正确三角剖分的综合算法,该算法对有理函数的定义没有多少限制。允许有理函数在域曲线(极点曲线)和某些特殊点(基点)上无定义,允许曲面有节点自交或尖自交。我们还认识到,对于一个完整的显示,参数曲面上的一些实数点可能仅由复参数值生成,而曲面上的一些有限点可能仅由无限参数值生成;我们将展示如何补偿这些条件。我们处理这些问题的技术在科学可视化、绘制非标准NURBS和有限元网格生成中都有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信