ML-based Data Anomaly Mitigation and Cyber-Power Transmission Resiliency Analysis

Zhijie Nie Anshuman, K. S. Sajan, A. Srivastava
{"title":"ML-based Data Anomaly Mitigation and Cyber-Power Transmission Resiliency Analysis","authors":"Zhijie Nie Anshuman, K. S. Sajan, A. Srivastava","doi":"10.1109/SmartGridComm47815.2020.9302953","DOIUrl":null,"url":null,"abstract":"In recent years, the cyber and physical extreme events have increased and impacted the power system operations. Although there are multiple work reported for improving the resiliency of the power grid systems, there are a limited number of resiliency management tools available to the grid operators. Addressing the data quality issue is critical before feeding the measurements for situational awareness and decision-making using resiliency management tools. In this work, we describe an automated ML-based measurement data anomaly mitigation technique that uses regression, clustering, deep learning techniques as a base detector. Maximum Likelihood Criterion (MLE) based ensemble of these base detectors helps in anomaly detection and mitigation using SyncAED tool and feeding data for enhanced resiliency using a tool: Cyber-Physical Transmission Resiliency Assessment Metric (CP-TRAM). CP-TRAM utilizes real-time power grid data and aims to assist operators in measuring resiliency and ensuring the energy supply to critical loads given a cyber-attack or a natural disaster. This paper discusses the multiple ML algorithms for data anomaly detection, the basis of software design considerations, open-source software components, and use cases for the prototype developed tools.","PeriodicalId":428461,"journal":{"name":"2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm47815.2020.9302953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In recent years, the cyber and physical extreme events have increased and impacted the power system operations. Although there are multiple work reported for improving the resiliency of the power grid systems, there are a limited number of resiliency management tools available to the grid operators. Addressing the data quality issue is critical before feeding the measurements for situational awareness and decision-making using resiliency management tools. In this work, we describe an automated ML-based measurement data anomaly mitigation technique that uses regression, clustering, deep learning techniques as a base detector. Maximum Likelihood Criterion (MLE) based ensemble of these base detectors helps in anomaly detection and mitigation using SyncAED tool and feeding data for enhanced resiliency using a tool: Cyber-Physical Transmission Resiliency Assessment Metric (CP-TRAM). CP-TRAM utilizes real-time power grid data and aims to assist operators in measuring resiliency and ensuring the energy supply to critical loads given a cyber-attack or a natural disaster. This paper discusses the multiple ML algorithms for data anomaly detection, the basis of software design considerations, open-source software components, and use cases for the prototype developed tools.
基于ml的数据异常缓解与网络电力传输弹性分析
近年来,网络和物理极端事件不断增加,影响着电力系统的运行。尽管有许多关于提高电网系统弹性的工作报告,但可供电网运营商使用的弹性管理工具数量有限。在使用弹性管理工具提供态势感知和决策测量之前,解决数据质量问题至关重要。在这项工作中,我们描述了一种基于自动机器学习的测量数据异常缓解技术,该技术使用回归、聚类、深度学习技术作为基础检测器。基于最大似然准则(MLE)的这些基本检测器集合有助于使用SyncAED工具进行异常检测和缓解,并使用网络物理传输弹性评估度量(CP-TRAM)工具提供数据以增强弹性。CP-TRAM利用实时电网数据,旨在帮助运营商测量弹性,并在网络攻击或自然灾害的情况下确保关键负载的能源供应。本文讨论了用于数据异常检测的多种ML算法、软件设计考虑的基础、开源软件组件以及原型开发工具的用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信