Joseph P. Turian, Jordie Shier, G. Tzanetakis, K. McNally, Max Henry
{"title":"One Billion Audio Sounds from GPU-Enabled Modular Synthesis","authors":"Joseph P. Turian, Jordie Shier, G. Tzanetakis, K. McNally, Max Henry","doi":"10.23919/DAFx51585.2021.9768246","DOIUrl":null,"url":null,"abstract":"We release synth1B1, a multi-modal audio corpus consisting of 1 billion 4-second synthesized sounds, paired with the synthesis parameters used to generate them. The dataset is 100x larger than any audio dataset in the literature. We also introduce torchsynth, an open source modular synthesizer that generates the synth 1B1 samples on-the-fly at 16200x faster than real-time (714MHz) on a single GPU. Finally, we release two new audio datasets: FM synth timbre and subtractive synth pitch. Using these datasets, we demonstrate new rank-based evaluation criteria for existing audio representations. Finally, we propose a novel approach to synthesizer hyperparameter optimization.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Conference on Digital Audio Effects (DAFx)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DAFx51585.2021.9768246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
We release synth1B1, a multi-modal audio corpus consisting of 1 billion 4-second synthesized sounds, paired with the synthesis parameters used to generate them. The dataset is 100x larger than any audio dataset in the literature. We also introduce torchsynth, an open source modular synthesizer that generates the synth 1B1 samples on-the-fly at 16200x faster than real-time (714MHz) on a single GPU. Finally, we release two new audio datasets: FM synth timbre and subtractive synth pitch. Using these datasets, we demonstrate new rank-based evaluation criteria for existing audio representations. Finally, we propose a novel approach to synthesizer hyperparameter optimization.