Correlation analysis as a dependency measures for inferring of time-lagged gene regulatory network

Ali Gorji Sefidmazgi, Fatemeh Ahmadi-Abkenari, Seid Abolghasem Mirroshandel
{"title":"Correlation analysis as a dependency measures for inferring of time-lagged gene regulatory network","authors":"Ali Gorji Sefidmazgi, Fatemeh Ahmadi-Abkenari, Seid Abolghasem Mirroshandel","doi":"10.1109/IKT.2016.7777761","DOIUrl":null,"url":null,"abstract":"One of the main aims of molecular biology is to understand regulatory relationships between the cellular components. Most of the methods developed to extract gene regulatory relationship from time-delayed gene expression data are not sensitive to non-linearity and non-monotonicity of the cellular system. Here we present four various time-lagged correlation methods including Pearson, Spearman, Kendall and distance correlation and an information theoretic measure (Mutual Information). We propose a method to limit potential regulators while introducing a new dynamic threshold. The SOS DNA Repair of E. coli dataset is used for simulation. The methods are implemented in R Programming language, and the results show the performance of the proposed method to reveal the structure of gene regulatory network.","PeriodicalId":205496,"journal":{"name":"2016 Eighth International Conference on Information and Knowledge Technology (IKT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT.2016.7777761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

One of the main aims of molecular biology is to understand regulatory relationships between the cellular components. Most of the methods developed to extract gene regulatory relationship from time-delayed gene expression data are not sensitive to non-linearity and non-monotonicity of the cellular system. Here we present four various time-lagged correlation methods including Pearson, Spearman, Kendall and distance correlation and an information theoretic measure (Mutual Information). We propose a method to limit potential regulators while introducing a new dynamic threshold. The SOS DNA Repair of E. coli dataset is used for simulation. The methods are implemented in R Programming language, and the results show the performance of the proposed method to reveal the structure of gene regulatory network.
相关性分析是推断基因调控网络时滞的依赖手段
分子生物学的主要目的之一是了解细胞成分之间的调节关系。大多数从延迟基因表达数据中提取基因调控关系的方法对细胞系统的非线性和非单调性不敏感。本文提出了四种不同的时间滞后相关方法,包括Pearson、Spearman、Kendall和距离相关以及一种信息理论度量(互信息)。我们提出了一种方法来限制潜在的监管者,同时引入一个新的动态阈值。模拟使用大肠杆菌的SOS DNA修复数据集。该方法在R编程语言中实现,结果表明了该方法在揭示基因调控网络结构方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信