{"title":"How to delegate computations: the power of no-signaling proofs","authors":"Y. Kalai, R. Raz, R. Rothblum","doi":"10.1145/2591796.2591809","DOIUrl":null,"url":null,"abstract":"We construct a 1-round delegation scheme (i.e., argument system) for every language computable in time t = t(n), where the running time of the prover is poly(t) and the running time of the verifier is n · polylog(t). In particular, for every language in P we obtain a delegation scheme with almost linear time verification. Our construction relies on the existence of a computational sub-exponentially secure private information retrieval (PIR) scheme. The proof exploits a curious connection between the problem of computation delegation and the model of multi-prover interactive proofs that are sound against no-signaling (cheating) strategies, a model that was studied in the context of multi-prover interactive proofs with provers that share quantum entanglement, and is motivated by the physical principle that information cannot travel faster than light. For any language computable in time t = t(n), we construct a multi-prover interactive proof (MIP) that is sound against no-signaling strategies, where the running time of the provers is poly(t), the number of provers is polylog(t), and the running time of the verifier is n · polylog(t). In particular, this shows that the class of languages that have polynomial-time MIPs that are sound against no-signaling strategies, is exactly EXP. Previously, this class was only known to contain PSPACE. To convert our MIP into a 1-round delegation scheme, we use the method suggested by Aiello et al (ICALP, 2000). This method relies on the existence of a sub-exponentially secure PIR scheme, and was proved secure by Kalai et al (STOC, 2013) assuming the underlying MIP is secure against no-signaling provers.","PeriodicalId":123501,"journal":{"name":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591796.2591809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 136
Abstract
We construct a 1-round delegation scheme (i.e., argument system) for every language computable in time t = t(n), where the running time of the prover is poly(t) and the running time of the verifier is n · polylog(t). In particular, for every language in P we obtain a delegation scheme with almost linear time verification. Our construction relies on the existence of a computational sub-exponentially secure private information retrieval (PIR) scheme. The proof exploits a curious connection between the problem of computation delegation and the model of multi-prover interactive proofs that are sound against no-signaling (cheating) strategies, a model that was studied in the context of multi-prover interactive proofs with provers that share quantum entanglement, and is motivated by the physical principle that information cannot travel faster than light. For any language computable in time t = t(n), we construct a multi-prover interactive proof (MIP) that is sound against no-signaling strategies, where the running time of the provers is poly(t), the number of provers is polylog(t), and the running time of the verifier is n · polylog(t). In particular, this shows that the class of languages that have polynomial-time MIPs that are sound against no-signaling strategies, is exactly EXP. Previously, this class was only known to contain PSPACE. To convert our MIP into a 1-round delegation scheme, we use the method suggested by Aiello et al (ICALP, 2000). This method relies on the existence of a sub-exponentially secure PIR scheme, and was proved secure by Kalai et al (STOC, 2013) assuming the underlying MIP is secure against no-signaling provers.