An Expert System for Incipient Fault Diagnosis and Condition Assessment in Transformers

H. Malik, T. Tarkeshwar, R. Jarial
{"title":"An Expert System for Incipient Fault Diagnosis and Condition Assessment in Transformers","authors":"H. Malik, T. Tarkeshwar, R. Jarial","doi":"10.1109/CICN.2011.27","DOIUrl":null,"url":null,"abstract":"The gases generated in oil filled transformer can be used for determination of incipient faults. Dissolved gas analysis (DGA) of transformer oil has been one of the most power full methods to detect the faults. The various methods such as liquid chromatography, acoustic analysis, and transformer function techniques are require some experience to interpret observations. The researchers have used artificial intelligence (AI) approach to encode these diagnostic techniques. This paper presents fuzzy-logic application and an overview of ANN techniques which can diagnose multiple faults in a transformer. Theoretical and practical fuzzy-logic (FL) information model and various researchers' ANN based experimental conclusion have been presented. This paper includes a demonstration of the application of the FL technique for transformer incipient fault diagnosis.","PeriodicalId":292190,"journal":{"name":"2011 International Conference on Computational Intelligence and Communication Networks","volume":"316 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2011.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The gases generated in oil filled transformer can be used for determination of incipient faults. Dissolved gas analysis (DGA) of transformer oil has been one of the most power full methods to detect the faults. The various methods such as liquid chromatography, acoustic analysis, and transformer function techniques are require some experience to interpret observations. The researchers have used artificial intelligence (AI) approach to encode these diagnostic techniques. This paper presents fuzzy-logic application and an overview of ANN techniques which can diagnose multiple faults in a transformer. Theoretical and practical fuzzy-logic (FL) information model and various researchers' ANN based experimental conclusion have been presented. This paper includes a demonstration of the application of the FL technique for transformer incipient fault diagnosis.
变压器早期故障诊断与状态评估专家系统
充油变压器产生的气体可用于早期故障的判定。变压器油溶解气体分析(DGA)已成为最常用的故障检测方法之一。各种方法,如液相色谱法、声学分析和变压器函数技术都需要一些经验来解释观察结果。研究人员使用人工智能(AI)方法对这些诊断技术进行编码。本文介绍了模糊逻辑在变压器多故障诊断中的应用,并对人工神经网络技术进行了综述。本文给出了理论和实践中的模糊逻辑信息模型以及各种研究者基于人工神经网络的实验结论。本文介绍了FL技术在变压器早期故障诊断中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信