Discretization of the Crime Rate from Numerical Into Categorical

S. Memon, F. Akhtar, A. Nazir, Ahsan Wajahat, Sirajuddin Qureshi, Faheem Ullah, A. Shakeel
{"title":"Discretization of the Crime Rate from Numerical Into Categorical","authors":"S. Memon, F. Akhtar, A. Nazir, Ahsan Wajahat, Sirajuddin Qureshi, Faheem Ullah, A. Shakeel","doi":"10.1109/iCoMET48670.2020.9074137","DOIUrl":null,"url":null,"abstract":"The objective of this study is to discretize the crime rate figures into categorical values and to find associations between different crime rates in multiple cities. Regression modeling is used to regress the value of one crime rate on the basis of all others or some of the other crimes rates. As per US statistics on crime, this research focused on identifying the variable crime in multiple cities of the US and categorized the data of crime by applying machine learning techniques with the establishment of data discretization and preprocessing process.","PeriodicalId":431051,"journal":{"name":"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCoMET48670.2020.9074137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The objective of this study is to discretize the crime rate figures into categorical values and to find associations between different crime rates in multiple cities. Regression modeling is used to regress the value of one crime rate on the basis of all others or some of the other crimes rates. As per US statistics on crime, this research focused on identifying the variable crime in multiple cities of the US and categorized the data of crime by applying machine learning techniques with the establishment of data discretization and preprocessing process.
犯罪率的离散化从数字到分类
本研究的目的是将犯罪率数据离散为分类值,并找出多个城市不同犯罪率之间的关联。回归模型用于在所有其他或某些其他犯罪率的基础上回归一个犯罪率的值。根据美国的犯罪统计数据,本研究的重点是识别美国多个城市的可变犯罪,并应用机器学习技术对犯罪数据进行分类,建立数据离散化和预处理过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信