{"title":"Distribution of the protons flow in electrolyte of the PEM fuel cell","authors":"E. Kurgan","doi":"10.1109/PAEE.2017.8009004","DOIUrl":null,"url":null,"abstract":"In this paper water management in proton exchange membrane (PEM) fuel cell is considered. First mass conservation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liquid water convection velocity is eliminated by the Schlögl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient.","PeriodicalId":397235,"journal":{"name":"2017 Progress in Applied Electrical Engineering (PAEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Progress in Applied Electrical Engineering (PAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAEE.2017.8009004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper water management in proton exchange membrane (PEM) fuel cell is considered. First mass conservation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liquid water convection velocity is eliminated by the Schlögl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient.