Explaining Website Reliability by Visualizing Hyperlink Connectivity

Seongmin Lee, Sadia Afroz, Haekyu Park, Zijie J. Wang, Omar Shaikh, Vibhor Sehgal, Ankit Peshin, Duen Horng Chau
{"title":"Explaining Website Reliability by Visualizing Hyperlink Connectivity","authors":"Seongmin Lee, Sadia Afroz, Haekyu Park, Zijie J. Wang, Omar Shaikh, Vibhor Sehgal, Ankit Peshin, Duen Horng Chau","doi":"10.1109/VIS54862.2022.00014","DOIUrl":null,"url":null,"abstract":"As the information on the Internet continues growing exponentially, understanding and assessing the reliability of a website is becoming increasingly important. Misinformation has far-ranging repercussions, from sowing mistrust in media to undermining democratic elections. While some research investigates how to alert people to misinformation on the web, much less research has been conducted on explaining how websites engage in spreading false information. To fill the research gap, we present MisVis, a web-based interactive visualization tool that helps users assess a website's reliability by understanding how it engages in spreading false information on the World Wide Web. MisVis visualizes the hyperlink connectivity of the website and summarizes key characteristics of the Twitter accounts that mention the site. A large-scale user study with 139 participants demonstrates that MisVis facilitates users to assess and understand false information on the web and node-link diagrams can be used to communicate with non-experts. MisVis is available at the public demo link: https://poloclub.github.io/MisVis.","PeriodicalId":190244,"journal":{"name":"2022 IEEE Visualization and Visual Analytics (VIS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Visualization and Visual Analytics (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS54862.2022.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As the information on the Internet continues growing exponentially, understanding and assessing the reliability of a website is becoming increasingly important. Misinformation has far-ranging repercussions, from sowing mistrust in media to undermining democratic elections. While some research investigates how to alert people to misinformation on the web, much less research has been conducted on explaining how websites engage in spreading false information. To fill the research gap, we present MisVis, a web-based interactive visualization tool that helps users assess a website's reliability by understanding how it engages in spreading false information on the World Wide Web. MisVis visualizes the hyperlink connectivity of the website and summarizes key characteristics of the Twitter accounts that mention the site. A large-scale user study with 139 participants demonstrates that MisVis facilitates users to assess and understand false information on the web and node-link diagrams can be used to communicate with non-experts. MisVis is available at the public demo link: https://poloclub.github.io/MisVis.
通过可视化超链接连接来解释网站可靠性
随着互联网上的信息呈指数级增长,了解和评估网站的可靠性变得越来越重要。错误信息具有广泛的影响,从在媒体中播下不信任的种子到破坏民主选举。虽然一些研究调查了如何提醒人们注意网络上的错误信息,但很少有研究解释网站是如何传播虚假信息的。为了填补研究空白,我们提出了MisVis,一个基于网络的交互式可视化工具,通过了解网站如何在万维网上传播虚假信息,帮助用户评估网站的可靠性。MisVis可视化了网站的超链接连接,并总结了提到该网站的Twitter账户的关键特征。一项有139名参与者的大规模用户研究表明,MisVis有助于用户评估和理解网络上的虚假信息,节点链接图可用于与非专家交流。MisVis的公共演示链接是:https://poloclub.github.io/MisVis。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信