Analysis of Emotional Influencing Factors of Online Travel Reviews Based on BiLSTM-CNN

Wenheng Sun, Wan Qiu, Xiaojia Huang, Jianming Hu, Tianyuan Wu
{"title":"Analysis of Emotional Influencing Factors of Online Travel Reviews Based on BiLSTM-CNN","authors":"Wenheng Sun, Wan Qiu, Xiaojia Huang, Jianming Hu, Tianyuan Wu","doi":"10.1109/cost57098.2022.00024","DOIUrl":null,"url":null,"abstract":"This paper analyzes the influencing factors of tourism development through the emotional tendencies in online travel reviews, and uses a Bidirectional long short-term memory Convolutional Neural Network (BiLSTM-CNN) deep learning model to classify online travel reviews. The model has high accuracy and good loss function convergence. Then we use the Dynamic Topic Models (DTM) model to analyze the classified texts at two levels. At the micro level, the main influencing factors of a destination are obtained for a certain destination, and corresponding improvement plans are proposed for the negative influencing factors. At the macro level, this paper analyzes the changing trend of the destination’s emotional inclination under the two influencing factors of fare and traffic.","PeriodicalId":135595,"journal":{"name":"2022 International Conference on Culture-Oriented Science and Technology (CoST)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Culture-Oriented Science and Technology (CoST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cost57098.2022.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes the influencing factors of tourism development through the emotional tendencies in online travel reviews, and uses a Bidirectional long short-term memory Convolutional Neural Network (BiLSTM-CNN) deep learning model to classify online travel reviews. The model has high accuracy and good loss function convergence. Then we use the Dynamic Topic Models (DTM) model to analyze the classified texts at two levels. At the micro level, the main influencing factors of a destination are obtained for a certain destination, and corresponding improvement plans are proposed for the negative influencing factors. At the macro level, this paper analyzes the changing trend of the destination’s emotional inclination under the two influencing factors of fare and traffic.
基于BiLSTM-CNN的在线旅游评论情感影响因素分析
本文通过在线旅游评论的情感倾向分析旅游发展的影响因素,并采用双向长短期记忆卷积神经网络(BiLSTM-CNN)深度学习模型对在线旅游评论进行分类。该模型精度高,损失函数收敛性好。然后利用动态主题模型(Dynamic Topic Models, DTM)对分类文本进行两个层次的分析。在微观层面上,针对某一目的地获得了某一目的地的主要影响因素,并针对负面影响因素提出了相应的改进方案。在宏观层面上,本文分析了在票价和交通两种影响因素下,目的地情感倾向的变化趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信