{"title":"LCD: Adaptive Label Correction for Denoising Music Recommendation","authors":"Quanyu Dai, Yalei Lv, Jieming Zhu, Junjie Ye, Zhenhua Dong, Rui Zhang, Shutao Xia, Ruiming Tang","doi":"10.1145/3511808.3557625","DOIUrl":null,"url":null,"abstract":"Music recommendation is usually modeled as a Click-Through Rate (CTR) prediction problem, which estimates the probability of a user listening a recommended song. CTR prediction can be formulated as a binary classification problem where the played songs are labeled as positive samples and the skipped songs are labeled as negative samples. However, such naively defined labels are noisy and biased in practice, causing inaccurate model predictions. In this work, we first identify serious label noise issues in an industrial music App, and then propose an adaptive Label Correction method for Denoising (LCD) music recommendation by ensembling the noisy labels and the model outputs to encourage a consensus prediction. Extensive offline experiments are conducted to evaluate the effectiveness of LCD on both industrial and public datasets. Furthermore, in a one-week online AB test, LCD also significantly increases both the music play count and time per user by 1% to 5%.","PeriodicalId":389624,"journal":{"name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Music recommendation is usually modeled as a Click-Through Rate (CTR) prediction problem, which estimates the probability of a user listening a recommended song. CTR prediction can be formulated as a binary classification problem where the played songs are labeled as positive samples and the skipped songs are labeled as negative samples. However, such naively defined labels are noisy and biased in practice, causing inaccurate model predictions. In this work, we first identify serious label noise issues in an industrial music App, and then propose an adaptive Label Correction method for Denoising (LCD) music recommendation by ensembling the noisy labels and the model outputs to encourage a consensus prediction. Extensive offline experiments are conducted to evaluate the effectiveness of LCD on both industrial and public datasets. Furthermore, in a one-week online AB test, LCD also significantly increases both the music play count and time per user by 1% to 5%.