Application of Conditional Variational Auto-Encoder to Magnetic Circuit Design with Magnetic Field Computation

Ryota Kawamata, S. Wakao, N. Murata
{"title":"Application of Conditional Variational Auto-Encoder to Magnetic Circuit Design with Magnetic Field Computation","authors":"Ryota Kawamata, S. Wakao, N. Murata","doi":"10.1109/COMPUMAG45669.2019.9032766","DOIUrl":null,"url":null,"abstract":"In the design optimization of electric machine, we ordinarily derive the objective physical quantities, e.g., the shape of the investigated model as design variables, by using numerical method such as the finite element method with the analysis conditions. In recent years, the representation learning using Deep Learning much attracts attention because it can acquire the features of data as a distributed representation and reproduce corresponding data. In this paper, utilizing machine learning technology, we propose an application of Conditional Variational Auto-Encoder (CVAE) to reproduce the more adequate shape of magnetic materials, i.e., design variables, corresponding to the intended magnetic energy, i.e., objective function values.","PeriodicalId":317315,"journal":{"name":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPUMAG45669.2019.9032766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the design optimization of electric machine, we ordinarily derive the objective physical quantities, e.g., the shape of the investigated model as design variables, by using numerical method such as the finite element method with the analysis conditions. In recent years, the representation learning using Deep Learning much attracts attention because it can acquire the features of data as a distributed representation and reproduce corresponding data. In this paper, utilizing machine learning technology, we propose an application of Conditional Variational Auto-Encoder (CVAE) to reproduce the more adequate shape of magnetic materials, i.e., design variables, corresponding to the intended magnetic energy, i.e., objective function values.
条件变分编码器在磁场计算磁路设计中的应用
在电机优化设计中,通常采用有限元法等数值方法,结合分析条件,推导出被研究模型的形状等客观物理量作为设计变量。近年来,基于深度学习的表示学习因其能够以分布式表示的方式获取数据的特征并再现相应的数据而备受关注。在本文中,我们利用机器学习技术,提出了一种条件变分自编码器(CVAE)的应用,以再现更合适的磁性材料形状,即设计变量,对应于预期的磁能,即目标函数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信