Evolutionary computation system for problem-tailored genetic optimization of catalytic materials

M. Holeňa, D. Linke, U. Rodemerck
{"title":"Evolutionary computation system for problem-tailored genetic optimization of catalytic materials","authors":"M. Holeňa, D. Linke, U. Rodemerck","doi":"10.1109/UKRICIS.2010.5898104","DOIUrl":null,"url":null,"abstract":"The paper addresses key problems pertaining to the commonly used evolutionary approach to optimization of catalytic materials. These are on the one hand the narrow scope of genetic algorithms developed specifically for searching optimal catalyst, on the other hand the insufficient dealing in existing implementations of genetic algorithms with mixed optimization. The paper outlines a program generator automatically generating problem-tailored genetic algorithms from descriptions of optimization tasks in a specific description language. For constrained mixed optimization, the generated algorithms employ an approach based on formulating a separate linearly-constrained continuous optimization task for each combination of values of the discrete variables. On the set of nonempty polyhedra describing the feasible solutions of those tasks, discrete optimization is performed, followed by solving those tasks for each individual of the resulting population of polyhedra.","PeriodicalId":359942,"journal":{"name":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKRICIS.2010.5898104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper addresses key problems pertaining to the commonly used evolutionary approach to optimization of catalytic materials. These are on the one hand the narrow scope of genetic algorithms developed specifically for searching optimal catalyst, on the other hand the insufficient dealing in existing implementations of genetic algorithms with mixed optimization. The paper outlines a program generator automatically generating problem-tailored genetic algorithms from descriptions of optimization tasks in a specific description language. For constrained mixed optimization, the generated algorithms employ an approach based on formulating a separate linearly-constrained continuous optimization task for each combination of values of the discrete variables. On the set of nonempty polyhedra describing the feasible solutions of those tasks, discrete optimization is performed, followed by solving those tasks for each individual of the resulting population of polyhedra.
催化材料问题定制遗传优化的进化计算系统
本文解决了与常用的催化材料优化进化方法有关的关键问题。这一方面是专门为寻找最优催化剂而开发的遗传算法的范围狭窄,另一方面是现有的混合优化遗传算法的实现处理不足。本文概述了一种程序生成器,根据特定描述语言的优化任务描述自动生成适合问题的遗传算法。对于约束混合优化,生成的算法采用基于为每个离散变量的值组合制定单独的线性约束连续优化任务的方法。在描述这些任务可行解的非空多面体集合上,进行离散优化,然后对得到的多面体种群中的每个个体求解这些任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信